Автоморфные формы и их приложения: Алексей Рослый
25 апреля 18:00 в аудитории 306 на семинаре «Автоморфные формы и их приложения» выступит:
Алексей Рослый (ИТЭФ, НИУ ВШЭ) с докладом «Локализация в эквивариантных когомологиях: прошлый век»
Аннотация:
Эквивариантные когомологии родились для изучения когомологий фактор-пространств, а пригодились (в матфизике) как инструмент вычисления некоторых интегралов "по вычетам". Это произошло под влиянием теоремы Дюйстермаата-Хекмана, которая лучше всего понимается в контексте эквивариантных когомологий. Я постараюсь объяснить это следуя Атье и Ботту, которые дали общую формулу локализации: интеграл от эквивариантно-замкнутых форм выражен через сумму/интеграл по неподвижным точкам действия группы Ли. Новый импульс развитию таких методов придал Виттен. Для физиков формула локализации выглядит как утверждение о том, что в определенных случаях, когда в задаче имеется удобная симметрия, квазиклассическое приближение оказывается точным. Это подталкивает к применению рассуждений с эквивариантной локализацией в бесконечномерном случае, то есть в теории поля. Виттен предложил как сделать это удобнее, и при этом придумал новую версию локализации, которая интересна и в конечномерном варианте. Я попытаюсь объяснить смысл теоретико-полевых рассуждений, а также доказательство конечномерной формулы локализации Виттена, которое дали Джеффри и Кирван в 1993 г. Если это получится, будет ясно с чем, в плане "вычисления интегралов по вычетам", матфизика пришла к концу прошлого века. В наступившем веке последовало несколько важных применений формул локализации в теории поля, а также, как всегда, инфляционное развитие популярности этой темы, но об этом я уже не смогу рассказать.