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In this talk, we will see 3 a priori different
kind of poles, having to do with:

• resolvents and spectra of opera‑
tors,

• ζ‑functions and Eisenstein series,

• the pole in

1

1− a
= 1 + a + a2 + a3 + . . . ,

the geometry behind which we will dis‑
cuss in due course.



1 Spectra, resolvents, wave packets, . . .



For a very, very, very basic example, take the difference operator

[∆f ] (x) = qf (x− 1) + f (x + 1) , f (−1) = f (1) ,

where x ∈ {0, 1, 2, . . . } and q > 1.
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It has eigenvalues ±(q + 1) and a continuous spectrum filling [−2
√
q, 2

√
q].
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This means the resolvent (∆− z)−1 has a pole at z = ±(q+1), a jump across
[−2

√
q, 2

√
q], and holomorphic elsewhere.

Stone’s formula gives the spectral projectors in the spectral theorem in
terms of the residues/jumps of (∆− z)−1.



How can one read this information off the behavior of nonnormalizable
eigenfunctions of ∆, also know as Jost functions etc. ?

It is easy to construct eigenfunctions such that

E(x, a) ∼ (q1/2a)x , x → ∞ , |a| � 1 ,

with eigenvalue

∆E(x, a) = λ(a)E(x, a) , λ(a) = q1/2(a + a−1) .



The function λ(a) = q1/2(a + a−1) is the one of the Zhukovsky airfoil fame:

a •• λ(a)−−−−−−→ •• λ

It takes {|a| > 1} to C \ [−2
√
q, 2

√
q].

The points a = ±q1/2 go to the eigenvalues of ∆.



While E(x, a) 6∈ L2, the corresponding wave packets

Eω(x) =

∮
|a|=c�1

ω(a)E(x, a)
da

2πia
,

with ω(a) ∈ C[a±1], are dense in L2 and satisfy

(∆− z)−1Eω(x) =

∮
|z|>|a|=c�1

ω(a)

λ(a)− z
E(x, a)

da

2πia
.



a •• λ(a)−−−−−−→ •• λ

From the formula for (∆− z)−1Eω , we see that:

• the function E(x, a) must have poles at a = ±q1/2, with residue the
corresponding eigenfunction of ∆,

• the 2:1 map {|a| = 1} λ−→ [−2q1/2, 2q1/2] creates the jump in the resolvent.



Logically, it is easier to invert this reasoning, and identify L2, and the op‑
erator ∆, with the completion of the Laurent polynomials ω(a)

C[a±1] ω 7→Eω //

λ(a)

��

L2

∆

��

C[a±1] ω 7→Eω //L2

with respect to the seminorm

‖Eω‖2 =
∫
|a|=c�1

(. . . )

=

∫
|a|=1

(. . . ) + ∗|ω(q1/2)|2 + ∗|ω(−q1/2)|2︸ ︷︷ ︸
residues from the poles of E(x, a)

.



2 ζ‑functions, Eisenstein series, . . .



The Riemann ζ‑function

ζ(s) =

∞∑
n=1

1

ns
=

∏
primes p

1

1− p−s

converges for <s > 1 and has a single pole at s = 1.

The more symmetric version

ξ(s) = π−s/2Γ(s/2) ζ(s) , ξ(1− s) = ξ(s)

has poles at s ∈ {0, 1}.



Among the many, many generalizations of ζ(s), we will meet:

• the functions ζF(s), ξF(s) for a global field F,

• the Eisenstein series.



Let Γ ⊂ R2 be a unimodular lattice.

The classical Eisenstein series for
G = SL(2,Q) is given by

Eis(Γ, s) = 1
2

∑
primitive γ ∈ Γ

1

‖γ‖s+1

for <s > 0, and by analytic continuation
for other values of s, with a pole at s = 1.

For Γ ⊂ R1, dropping the primitive condi‑
tion, this would be ζ(s + 1).



Primitive vectors γ in Γ modulo ±1, are
indexed by their slope, which takes values
in Q∪ {∞}. Equivalently,

Zγ ∈ P1(Q) = SL(2,Q)
/
Borel subroup .

For any projective homogeneous variety
G/P over a global field F one can count
points of G/P(F) according to their height.
These height ζ‑functions, a.k.a. Eisen‑
stein series, have parallel analytic prop‑
erties.



As a function of the lattice

Γ ∈ SO(2,R)\SL(2,R)/SL(2,Z) ,

Eis(Γ, s) is an eigenfunction of the Laplace operator and Hecke operators.

It is not in L2 for any value of s, just like E(x, a) from before. In fact, E(x, a)
are Eisenstein series for G = PGL(2,Fq(t)).



The problem studied by Langlands and many people since, including Mœglin,
Waldspurger, Heiermann, de Martino, and Opdam, is to determine the spec‑
trum of the Laplace and Hecke operators in the intersection of L2 and the
span of the Eisenstein series.

Equivalently, one can talk about the corresponding wave packets

Eisf =
∫
<s=c�0

f (s)Eis(Γ, s) ds

= 1
2

∑
primitive γ ∈ Γ

f∨(‖γ‖) ,

known as the pseudo‑Eisenstein series1.

1Here f∨(x) =
∫
x−s−1f(s)ds is the Mellin‑Fourier‑Laplace dual of f and we can assume f∨ to be C∞ and

with compact support. People call such functions f the Paley‑Wiener functions.



Challenging conjectures (due to Langlangs, Arthur, . . . ), some of which were
already proven, link this spectrum to nilpotent elements e in the Langlands
dual Lie algebra. Incidentally, for SL(2,Q), this means

•
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0 0 )

which is the Lie algebra q → 1 version of the group‑theory picture
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from earlier.



Concretely, in part 1 , we have

λ(a) = q1/2 tr

(
a

a−1

)
and the spectrum is described by(

a

a−1

)
∈ qh/2 SU(2)e ⊂ SL(2,C) .

Here SU(2)e means the centralizer of e and h solves [h, e] = 2e, that is, h is
the middle element of the sl2‑triple 〈f, h, e〉 determined by e.

For e = 0, we have h = 0, and hence we get |a| = 1. For e 6= 0, we have
h = diag(1,−1), SU e = {±1}, giving a = ±q1/2.



These conjectures been approached through residue calculus in certain
integrals first written down by Langlands (who himself carried out spectac‑
ularly complex computations for groups of type G2).

In those computations, nearly everything cancels out, except one unex‑
pected term that was linked to the subregular nilpotent in G∨

2 = G2, . . .



Concretely, for G/B(F) one has to push the contour in

(Eisf1,Eisf2)L2 =

∫
<λ=λ0�0

dλ
∑
w∈W

f1(λ)f2(−wλ)
∏
α>0
wα<0

ξF(α(λ))

ξF(α(λ) + 1)

towards <λ = 0, where

λ = a vector in CrkG = Lie algebra of max torus in G∨

W = a finite reflection group acting on CrkG

{α} = the roots (≈ equations of reflection hyperplanes)
ξF = the completed ζ‑function of F

For G = E8, we have

rk = 8 , |W | = 696729600 , |{α > 0}| = 120 .

While
∑8

i=0

(
120
i

)
≈ 1012, there are only 70 nilpotent conjugacy classes, and

each contributes an easily describable piece to the spectrum.



Inverting the logic like we did in the baby example, we can describe the
Hilbert space in questions as the completion of (Paley‑Wiener) functions2

Fun(λ)
f 7→Eisf //

mult by C[λ]W

��

L2

Laplace and Hecke

��

Fun(λ)
f 7→Eisf //L2

with respect to the seminorm

‖f‖2Eis = ‖Eisf‖2L2 .

2Mellin‑Fourier‑Laplace transforms of C∞‑functions with compact support, as before



To see the expected connection to nilpotent elements e ∈ LieG∨ is the Lie
algebra of the Langlands dual complex group, we must have

‖f‖2Eis =
∫
<λ=λ0�0

∑
w∈W

∏
α>0
wα<0

ξ

ξ
. . .

!
=
∑
e

∫
1
2h+Lie(K∨)e

|Πf |2dµspectral .

Here f → Πf is a certain projection to W ‑invariant functions of λ, that is,
conjugation‑invariant functions on LieG∨, and dµspectral is a measure in the
Lebesgue measure class.



Geometrically, it may be slightly easier to work with a bilinear form

Fun(λ)⊗Fun(λ)W Fun(λ) 3 f1 ⊗ f2 → (f1, f2)Eis .

We want to write this bilinear form as a sum over nilpotents in LieG∨.



3 Characters as distributions



The geometric series

1

1− a
= 1 + a + a2 + a3 + . . . ,

may be interpreted as the trace of the element a ∈ GL(1) acting by

x
a−−−−→ ax

on

C[x] =
∞⊕
k=0

Cxk ,

= functions on a line X = A1 with coordinate x .

We note that
poles of

1

1− a
=
{
a
∣∣Xa is not compact

}
.



Moreover,

multiplicity of ak in C[A1] = δk≥0

=

∫
|a|=c<1

a−k 1

1− a
dHaara

It is thus natural to interpret (
trC[x] a

)
dHaara ,

with a choice of the integration contour, as a holomorphic distribution on
GL(1) or ordinary distribution on U(1).



This can be generalized as follows:

For many noncompact algebraic varieties X, irreducible representations of
Aut(X) appear in C[X ] with finite multiplicity, and hence the character of
C[X ] is well‑defined as a conjugation‑invariant distribution on Aut(X).



This can be further generalized in two ways:

• replace functions OX on X by finitely generated modules over functions,
that is, by coherent sheaves F on X. We assume F equivariant for
some G ⊂ Aut(X).

• replace globally defined functions, or global sections of F , by other
cohomology groups H i(X,F ).

Particularly important are Euler characteristics

χ(X,F ) =
⊕

(−1)iH i(X,F ) ∈ virtual representations of G



Euler characteristics χ(X,F ) are additive in both F and X. Namely,

χ(F ) = χ(F1) + χ(F2) ,

for 0 → F1 → F → F2 → 0 and also

χ(X, · ) = χ(X \ Y, · ) + χ(Thom(Y → X), · )

for Y ⊂ X closed. Here

H i(Thom(Y → X), · ) = H i
Y(X, · )

is just a fancy but suggestive notation for local cohomology.

This means that in our computations descend to [F ] ∈ KG(X) and to the
class [X] in a suitable scissors congruence group of varieties.



Recall from part 2 that we are looking for a linear functional on

Fun(λ)⊗Fun(λ)W Fun(λ)

where

Fun(λ) =

{
C[A∨] for a function field F,

PW functions on LieA∨ for a number field F.

In topology, this has to do with the K‑theory/cohomology of the flag variety
for G∨ and, in particular for

X = T ∗(B∨\G∨/B∨)

we have
K(X) = Z[A∨]⊗Z[A∨]W Z[A∨] .



In fact,
(f1, f2)Eis = χ

(
X, (f1 ⊠ f̄2)⊗ . . .

)
.

where “. . . ” stand for some fixed K‑theory class, the exact form of which is
of little importance for what follows.



But, if one wants to be more precise, we have3

(f1, f2)Eis = χ
(
X, (f1 ⊠ f̄2)⊗ L‑genus(X)

)
.

Here the L‑genus refers to a certain Galois‑equivariant genus, the full dis‑
cussion of which will be left out.

In principle, L‑genus has to do with actions of groups of the form

1 → Γ′ → Γ → Norms(A×
F ) → 1 .

In the case at hand, Γ acts via Norms ⊂ R>0 scaling of the cotangent fibers
of X and the L‑genus specializes to the genus defined by the function ξF.

3This follows from definitions and equivariant localization. Deeper meaning may be discussed separately.



Famously, there is the Springer map

π : T ∗(G∨/B∨) → Nilp(Lie(G∨)

which is the resolution of the singularities of the nilpotent cone.

This descends to a map

π̄ : X = T ∗(B∨\G∨/B∨) → N = Nilp(Lie(G∨)/G∨ .

The target here has finitely many orbits, and

π̄−1(e) = π−1(e)× π−1(e) .



From the diagram
X
π̄

��

π−1(e)× π−1(e)

��

oo

N pt /(G∨)eoo

we compute (f1, f 2)Eis = χ(X, . . . ) is a sum over the nilpotents e.

Each term, by orthogonality of characters, is an integral over the maximal
compact subgroup in (G∨)e.

The projector f → Πf comes from the integration over π−1(e). The spectral
measure comes from various normal bundles including the unipotent radical
of (G∨)e.

This concludes the proof and the talk.




