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Objects of interest

My main interest is in algebraic geometry, namely I work with
spaces X which are to be understood as smooth projective varieties
over C but parts of this story can be extended to more general
objects.
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My main interest is in algebraic geometry, namely I work with
spaces X which are to be understood as smooth projective varieties
over C but parts of this story can be extended to more general
objects.
I want to understand X by looking at the bounded derived
category Db(X ).



Chronology of the problem I

1. 1962 - Gabriel shows that Coh(Y ) is a complete invariant for
noetherian schemes Y .

2. 1981 - Mukai discovers the existence of non-trivial
Fourier-Mukai partners, abelian varieties X , X ′ such that
Db(Coh(X )) ≃ Db(Coh(X ′)), yet X ̸∼= X ′.

3. 2001 - Bondal and Orlov show this does not happen if X is
such that it has ample canonical or anti-canonical bundle.
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Chronology of the problem II

1. 2002-2005 - Balmer develops a construction which inputs a
tensor triangulated category (T ,⊗,U) and outputs a locally
ringed space Spec(T ,⊗,U). He shows that
Spec(Perf (X ),⊗L

X ,OX ) ∼= X for topologically noetherian
schemes X .



The natural questions

Questions
Is every tensor triangulated structure on Perf (X ) coming from a
Fourier-Mukai partner?
Does Balmer imply Bondal-Orlov?

No, and no.
Liu and Sierra showed that if Perf (X ) ≃ Db(RepQ), the derived
tensor product of quiver representations ⊗L

Q gives

|Spec(Perf (X ),⊗L
Q)| ∈ N.
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Example

If X = P1 then by Bondal-Orlov, there are no non-trivial
Fourier-Mukai partners of X . But Perf (P1) ≃ Db(RepK1), where
K1 is the Kronecker quiver with two vertices and two edges.



Example

If X = P1 then by Bondal-Orlov, there are no non-trivial
Fourier-Mukai partners of X . But Perf (P1) ≃ Db(RepK1), where
K1 is the Kronecker quiver with two vertices and two edges.
Liu-Sierra then calculate that the underlying topological space of
Spec(Perf (P1),⊗L

K1
) has cardinality 2



Serre functors

Definition
Let T be a triangulated category. A Serre functor S : T → T is an
additive functor such that

HomT (A,B)
∼=−→ HomT (B,S(A))

∗

Example

If X is a smooth proj. variety of dimension n then ⊗L
X ωX [n] is a

Serre functor.



Almost ample sequences

Definition
Let T be a triangulated category and (⊗,U) a TTC on T . We say
that a collection of objects Ω ⊆ T is an spanning class if the
following holds:

▶ If X ∈ T is such that HomT (π(B),X [j ]) = 0 for all B ∈ Ω
and j ∈ Z then X ∼= 0.

▶ If X ∈ T is such that HomT (X [j ], π(B)) = 0 for all B ∈ Ω
and j ∈ Z then X ∼= 0.
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General type varieties

Combining everything

▶ {ω⊗i
X } is an spanning class.

▶ The collection {ω⊗i
X } ”generate” Db(X ). Every complex A•

has a resolution with terms⊕
j

ω
⊗L

X∗ i

X∗
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The theorem

Theorem ([Tol24])

Let X be a smooth proj. variety of dimension n with ample
canonical bundle ωX . If ωX is an invertible object for a TTC
(⊠,OX ) on Db(X ) then ⊠ and ⊗L

X coincide on objects.

Corollary ([Tol24])

Let X be a variety with ample canonical bundle and let (⊠,OX ) be
a TTC on Db(X ). If Spec(⊠) is a smooth projective variety and
we have an equivalence Db(X ) ≃ Db(Spec(⊠)) then X ∼= Spc(⊠).
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The setting

Can we give a relative version of the monoidal Bondal-Orlov
reconstruction theorem? Calabrese gives in [Cal18] a proof for
relative, singular spaces while considering twisted derived
categories.

How to say this for the monoidal case?

We want to consider π : X → S a smooth projective variety,
faithfully flat over a quasi-compact quasi-separated scheme S ,
whose fibers along any point s ∈ S have ample (anti-)canonical
bundle, and put a TTC (⊠,U) on Db(X ) which

1. Captures the data of the structure map π : X → S .

2. Restricts to the derived category of the fibers Db(Xs).
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Solutions

1. We need to impose some linearity condition wrt ⊗L
S : There is

a projection formula, π∗(π
∗E • ⊠ P•) ∼= E • ⊗L

S π∗P
• for any

E • ∈ Db(S) and every P• ∈ Db(X ).

2. But, how to restrict to fibers? Is there an induced TTC
structure on Db(XU = X ×S U) or Db(Xs)? If so, how are
these related?
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Transporting TTCs

A general construction we can perform is, if ⊠ is a TTC on a
triangulated category T ′, and F : T → T ′ has a right adjoint
G : T ′ → T then we can write

( )⊠FG ( ) := G (F ( )⊠ F ( )) : T × T → T

We call this the transport of ⊠ along F ⊣ G .

Immediate problem

This transported structure ⊠FG does not need to be a TTC on T .
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Magmoidal structures

Silver lining

”Associativity” of ⊠FG is less important in our context because
Serre functors behave well with respect to adjoint functors.

Definition
We say ⊠ is reasonable with respect to F ⊣ G if

1. F (U) acts as a unit for ⊠FG .

2. ⊠FG -invertible objects have strong duals.

3. If X is ⊠FG -invertible then X⊠FG is full.
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The dg-world

A well known problem with triangulated categories is that they do
not behave that well in families. So let us move to the
higher-categorical language of dg-categories.

Recall that the
triangulated category Db(X ) has a dg-enhancement, which means
there is a dg-category Db

dg (X ) such that H0(Db
dg (X )) ≃ Db(X ) as

triangulated categories.
But what about the tensor triangulated category structures? Do
they have enhancements?
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Morita theory

Theorem (Eilenberg-Watts theorem)

Let A,B be rings, there is an equivalence between the category
Funadd ,cc(R −Mod ,S −Mod) of additive cocontinous functors
between the categories of R-Modules and S-Modules, and the
category (R,S)− Bimod of R − S-bimodules (or
Rop ⊗ S-modules).

We want a similar theorem for dg-categories enhancing derived
categories of sheaves.
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DK model structure

For this to work, we need to use some homotopy theory.
Tabuada [Tab05] introduced a model category structure on the
category of DG-categories.

Rough definition

We will declare two DG-categories T ,T ′ to be weakly equivalent
if there is F : T → T ′ inducing quasi-isomorphisms
HomT (x , y) → HomT (F (x),F (y)), and H0(F ) is essentially
surjective.

There is a homotopy category Hqe resulting from this identification.
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Morita theorem for DG-categories

In [Toë07], Toën constructed a derived tensor product ⊗L of
DG-categories on Hqe , ⊗L

X and showed that the Morita theorem
for DG-categories holds true when one passes to the homotopy
category.

Theorem ([Toë07])

Let T = Db
dg (X ) and T ′ = Db

dg (X
′) be two dg-enhancements of

Db(X ) and Db(X ′) for varieties X ,X ′, then there exists a natural
isomorphism in Hqe

RHomc(T̂ , T̂ ′) ≃ ̂T op ⊗L T ′



n-fold DG-bimodules

Definition
Let T be a DG-category. An n-fold DG-bimodule over T is a
DG-module F ∈ T ⊗n ⊗ T op −Mod .

In particular a 0-fold DG-bimodule is nothing but a T op −module
and a 1-fold bimodule is what we usually call a bimodule over T .
We consider the dg-category Bimodn

dg (T ) of n-fold dg-bimodules
over T .
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Lifting TTC’s

Theorem
Suppose T is equivalent in Hqe to Ape , the category of perfect
DG-modules over a DG-algebra A. Let
⊠ : H0(T )× H0(T ) → H0(T ) be an exact functor in each
variable. Suppose that for every object M ∈ H0(T ), the
triangulated functors

M ⊠ : H0(T ) → H0(T )

⊠M : H0(T ) → H0(T )

both have unique DG-enhancements RM and LM respectively.
Then LA(A) is a 2-fold DG-bimodule and for any N ∈ T we have

H0(LA(A)⊗M ⊗ N) ≃ M ⊠ N.



What does this mean?

Remark
The previous result allows us to encode a tensor product
⊠ : T × T → T in a TTC as a 2-fold DG-bimodule over a
DG-enhancement T of T.
In applications in Algebraic Geometry, both T and ⊠ would
usually satisfy the theorem’s hypothesis.

The proof of the theorem uses strongly Toën’s Morita theorem for
DG-categories.
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Pseudo DG-tensor structures

Let us present the following definition in obvious analogy with the
usual (lax) symmetric monoidal category axioms:

Definition
A pseudo DG-magmoidal structure in a DG-category T consists
on the data:

1. A 2-fold DG-bimodule Γ ∈ Bimod2
dg (T )

2. An object U ∈ T op −Mod called the unit.

3. Morphisms of DG-bimodules
αX ,Y ,Z : ΓX ,Γ ⊗ ΓY ,Z → ΓΓ,Z ⊗ ΓX ,Y ∈ Bimod3

dg (T ) .

4. A morphism of DG-bimodules
ℓX : ΓU,X ⊗ U → T −Mod ∈ Bimod1

dg (T ).

5. A morphism of DG-bimodules
rX : ΓX ,U ⊗ U → T −Mod ∈ Bimod1

dg (T ).

6. A morphism cX ,Y : ΓX ,Y → ΓY ,X of DG-bimodules.

We require that the morphisms uX and cX ,Y are all isomorphisms
when passing to the homotopy category H0(C (k)), for all
X ,Y ∈ T op −Mod .
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Continuation

Definition
Plus..

1. (Unit) A morphism µ ∈ Hom−1(ΓX ,Γ ⊗ ΓU,Y , ΓΓ,Y ⊗ ΓX ,U)
such that ℓ0X ⊗ IdY ◦ α0

X ,U,Y − IdX ⊗ ℓ0Y = d(µ)

2. (Symmetry) The composition cX ,Y ◦ cY ,X is the identity in
H0(T −Mod).

3. (Unit symmetry) There is κ ∈ Hom−1(ΓX ,U ,X ) such that
ℓX ◦ cX ,U − rX = d(κ).

4. Etc..



Lifting tensor triangulated structures

To relate this definition with tensor triangulated structures we
have:

Proposition [TC23]

A perfect pseudo DG-magmoidal structure Γ on a DG-category T
induces a magmoidal triangulated category structure on H0(Tpe).
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Proposition [TC23]
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Now we are talking!

By translating the TTC structure in terms of modules of a certain
kind at the level of dg-categories, we can more easily perform
useful common constructions which are purely algebraic, like taking
(co)limits!



A stack of dg-categories

In [HS98] Hirschowitz and Simpson, (and then Toën-Vaquié
([TV07]) construct a (derived) stack Ape of simplicial categories of
perfect complexes. One can adjust this definition and see that the
assignment on affine opens

U ⊆ S 7→ Ape(U) := Perf dg (XU)

glues into a higher stack with values in the ∞-category of
dg-categories.



Stalks around a point

By using the stalk Ape , we can define ”the stalk” around a point
s ∈ S of this assignment. We write simply

(Ape)s = ColimU∋sApe(U)

But what about the monoidal structure?

Geometric reasonableness
We need a compatibility condition. A MTC structure ⊠ or a
dg-enhancement Γ of it is geometrically reasonable if

1. It is reasonable wrt I ∗U ⊣ IU ∗ for IU : XU ↪→ X .

2. The restriction functors Ape(V ) → Ape(U) are ”monoidal”.

ϕUV ( ⊠V ) ≃ ⊠U
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One more stack

Using the same formalism of Toën-Vaquié, we can also construct
the Internal Hom stack RHom(A⊗2

pe ,Ape) which parametrizes
2-fold dg-bimodules over the base scheme S .
On each U ⊆ S we obtain the simplicial set of maps between the
stacks A⊗2

pe and Ape .



Time to assemble

We start from the data of a S-linear tensor structure (⊠,U) on a
smooth proj. π : X → S faithfully flat over S so that Xs has ample
canonical or anti-canonical bundles for every s ∈ S .

Theorem ([ST24])

If ⊠ is reasonable with respect to I ∗s ⊣ Is ∗, I
∗
s U ≃ OXs and ωXs is

⊠s -invertible, then ⊠s coincides on objects with ⊗L
Xs
.
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Intermediate notation/definition

Definition

1. mU = {P• | SupphP• = ∅}

2. ms = ColimU∋smU

3. Ape(s) := Perf dg (Xs)
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Time to assemble II

From fibers to stalks
There are diagrams in the ∞-category of dg-categories:

Ape(U)

yy �� ''
(Ape)s //

%%

Ape(s) Ape(U)/mU
oo

ww
(Ape)s/ms

OO



Nakayama

We use [Zim23] to argue using a dg-version of the Nakayama
lemma for fg modules over a dg-algebra A and conclude that the
vanishing of an object P ∈ (Ape)s is equivalent to the vanishing
when passing to the quotient/the fiber Ape(s).



Another diagram

From fibers to stalks again

RHom(Ape(s)
⊗2,Ape(U))

��tt
RHom(Ape(s)

⊗2, (Ape)s) //

**

RHom(Ape(s)
⊗2,Ape(s))ac

RHom(Ape(s)
⊗2, (Ape)s)/Hms

OO



The actual theorem

Theorem
Let X → S smooth proj faithfully flat over qsqc S with a point
s ∈ S s.t. Xs has ample canonical or anti-canonical bundle. Let
(⊠,U) be an S-linear TTC over Perf (X ), which is geometrically
reasonable and reasonable with respect to the pair I ∗s ⊣ Is ∗. If ωXs

is ⊠s -invertible and I ∗s (U) ≃ OXs then there is an open affine
subset U ⊆ S such that ⊠U coincides on objects with ⊗L

XU
.



Relative Monoidal Bondal-Orlov

Theorem
Suppose X → S is a smooth proj. variety faithfully flat over a qsqc
base scheme S . Suppose for every s ∈ S Xs has an ample canonical
or anti-canonical bundle. Let (⊠,U) be as above. Suppose that
Spec(⊠) is a smooth projective variety, faithfully flat over S such
that Db(Spec(⊠)) ≃ Db(X ), then X ∼= Spec(⊠) as S-schemes.



Thank you!
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