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Motivation (S-duality modulanity
-

Conjecture

let X : 193
, H(1

Assume Pic(X) is generated by an ample divisor L

fix Keto ,
let He (L/

&
Smooth element .

C : generator of HWT EN
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fixed Chern character fix ineth

i = J(in) = (0, H/ - il , X (0 - H . +( - n)

at MCX : Moduli Space of Gieseker SS sheaves

↑ CenCX) ,
ChcFl-cin)

MisK c
ut Ccil)EQ : Joyce-Song generalized DT

inut -

Partition function :

Zig- (in) &
"
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Enk Tensoring by OCIL) induces isomorphisms onMCX

nence Zity) and Z1q only differ bya

shift in power of 9.

& duality conjecture

(Gaiotto-Stromiger-Yin)
al

( ,----,
is a - - -

is a holomorphic rector valued modular form of

weight

Where di=



Artan Sheshmani

Counting curves on surfaces in Calabi-Yau threefolds, (with Amin Gholampour and Richard P. Thomas), Mathematische Annalen, Volume 360, 
Issue 1-2, pp 67-78 (2014), arXiv:1309.0051.

To prove modularity we need:
1. Generalize from rank 1, ideal sheaf counting to rank one general sheaf counting 

   2. Compute higher rank sheaf counting from rank 1 sheaf ocunting (Feyzbakhsh, Thomas)
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En When Sheaf F = Ideal Sheaf 1-dimil Subschene

& CH
;
in joint work with Ghelampour -Thomas

(2014)

we defined invts Nt which govern Contributiono

of Hill (A) to DE

universal/73on

Hypersurface .

&
M=

Needed a positivity condition * for def-obs they to work
H (X , 8z0(H) = 0 is o

Nin = Phirt desting= 0



To preve S-duality Conjecture

H

Step 0 : Contribution of N
B, n

to DTCT) (GST 2014)

Step( : Contribution ofsheaves of UK=1 with Support

and investigating modularity.↑
Still open

StepQ : Contribution of Higher rank sheaves with

Support on H - and investigating modularity-
Feyzbaksh
&

Still open Thomas

~
Wall crossing- =-(2020)↓

ranko - rank1-> rank)
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Mathematics, Vol. 326, No. 21, p. 79-107 arXiv:1309.0050.



Artan Sheshmani

Stable pairs on nodal K3 brations, (with Amin Gholampour and Yukinu Toda), International Mathematical Research Notices, Vol. 2017, No. 00, 
pp. 1-50, arXiv:1308.4722.



Artan Sheshmani

On topological approach to local theory of surfaces in Calabi-Yau threefolds, (with Sergei Gukov, Melissa Liu and Shing-Tung Yau), 39 pages, 
Advances in Theoretical and Mathematical Physics, Vol 21, no 7, p. 1679-1728 arXiv:609.04363.



Artan Sheshmani

Nested Hilbert schemes on surfaces: Virtual fundamental class, (with Amin Gholampour and Shing-Tung Yau), 47 pages, Advances in 
Mathematics, Vol 365, 13, May 2020 arXiv:1701.08899.

Localized Donaldson-Thomas theory of surfaces, (with Amin Gholmapour and Shing-Tung Yau), 28 pages, American Journal of Mathematics, 
Vol 142, 2, April 2020,



Artan Sheshmani

Atiyah class and sheaf counting on local Calabi Yau 4 folds, (with Emanuel Diaconescu and Shing-Tung Yau), Advances in Mathematics, Vol 
368, 15 July, 2020, 54 pages, arXiv:1810.09382.



Step 0 : Contribution of general rank 1 Sheaves

ieasier

with Support on hyperplane Section HCX.
ieasin



Step 0 : Contribution of general rank 1 Sheaves

·mhyperplane SectionA
N

Strategy : degenerate X m Y
, VY

& &

C43
&cYi anticanonical

divisor.

# : 4 dimit , Smooth ,Proj ,Fanc variety with ample

anticanonical K ;
1t : Spec K[t].

Consider trivial family #p :PX-> & section

Se H(PX(A)kEO,)
We view St as a Section of Kp dependent.
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Six aSpritting K 2105
,
Li

, i =1

ample line bundles

P : "good degeneration" if

to Zistl=: XC , Smooth (43

+ Sca = Si .Sa ; SitH(Pifi) isliz

Zesil : Yi C ;
3 dimil Fano

Y
,
& Y2 intersect transversely along

their anticanenical divisor

Eg. Xy = z(fg(Xo : ...i Xu)t1P4
IP3
112

↓gr Y , UYz :: +fo : - :Xu)-fiFu =F(t
&↓ ↳ K3 Quantic +o m ZIFH) = C43

Smooth
Quartic
Cp4 += ou=(F() =YUY

Might need to Smoother family XSue Y, &Yeg
. Blip
IS

C
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Dream : Use degeneration technique in DT theory.

#
PT(X

Yz PTMs)

DT = 2 DTYyI : DTYs
=T+E -

Relative DT inuts -

DT(YY) = DT invt of Fit Coh(Yi) which meet

is1 , 2 & Chomologically) transverselyC (i. e. Tor <FiOs) = 0
pen condition
↓

Mis) Mi
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Jun Li (inventor of degeneration technique inGWthy

Li-Wn (degeneration of ideal Sheares &fPT Stable )
pairs

P Pz

# senario

pX Yz

↓ Replace with expanded
degenerations

Expanded
e

Y
,
[n] ↓ Y[n]

PT pairs induces compactification of relative moduli
- Sp
M(Yi/s)



Li-Nu if Fi are ideal sheaves
-
-thanPande-ThomasStable pairs. (PT)

then expanded degenerations give compactification

Similar to JunLi's degeneration
Bad Scenario

Program in GW theoy.

· [n]
,

-

-L / []
S-Y ↓ -LY i I
.

A Y-- S

---:Ya Y

, S I S-
-

[=
: ! ↓

= - Y2
Sxo 12-bubbles

↑
Recall from GI Theory



in the Limit !

[n]
, []

i
S

i I-Y----XX
Y

,
s : ! ↓~

-
-

[
- s
ni-bubbles
- Y2

↑ 12-bubbles
/ --* ---! i-- S3 * I /

a X
&- - [s ↓IS-

ni-bubbles i
-

&- I C2
-

↓

J/ &
-↳~X ---- iS B i -↑ C &

-

a

-

.. iiM(XiC LI : !X - X S--- ↓ - -> ↓
X

-
-

[=

-

- I Yi-↓
A +

x/ --- -
S

si I
---- &! -

-

[X *
X I IS Xs Y
, - ↓

↑

i

12-bubbles
- -ni-bubbles

C I M(Ya , /IM(Y
, / S

S

↑
Hills Hill (s/xHilb(s)

↓

(IY[MXijuirdefEa
e
I, DIMM



-

Issue :

For general coherent sheaves Li-Wn compactification

by expanded degenerations does not work !!!

j

Fin] might become destabilized

·
Yi[n]

iis net well defined

Due to Stability issues
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Remedy : Work with all sheaves (and the nentransverse)
ones

↑
and use derived intersection thory! Perfect complexes

PIschemeof rigidified Perfect complexes

MCX) := Moduli space of FePerf(x) ; which are rigidified
&

i .e . det#EJE Picx , and

① Ext(FIF) = o io

& trace map Ext CFF)- & is an isom - (i.e.F(
Y isSimple

By(hirg-Toin-Vezzosie) : The derived stack MCI
2015

is quasi-smooth (i . e. The def-obs complex Ex)
is perfect of amplitude [1,0]
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define Similarly M14 ,) ,MIY2) ,MIS) and assume try

are equipped with universal families F,

Since SYi is a divisor - natural (derived(
i-1 , 2

restriction may I En FOSxMis is1 , 2 .

M(X) M(Y ,) Miyal
E - d-Misi

Es

Tyurin
Theorem (Calac , BenBassaty let ri : M(Yil->MISI
-

Bananevsky-katzarker&& Kontserich-524
denote the derived restriction morphism. Then U,

Satisfies the Conditions of inducing a Lagrangian structure

i. e. I induced map G=-LucyilS] is a
quasi-isom of perfect opixes ·
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R
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O
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Proof McGil Ei, Miss

a *-
exactA Tri- mysl-ri Il MIS)-

in DPMcYi
qi

Corresponds to
MiYilxYi -+Yi

RaRheu(f)[] pi
MLYil

↓

Re Rher (i) [i]
↓

R
Pin Criti

*
RHm (Fill(1] ·

Yi Fano
-

1)

Inducing: Timmil til
xii

↓ ↓

MinisterMinist->rMil
W

MISI

=> I homotopy map between r
*

Ws and 0

Isotropic Structure !
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For nendegenerally need to show

-
I -ritlI
M1Yil McSI Mcs) McGil

is quisom to 0-

III

Tri-til+r* this
↳ Elio
1-ris-M2Yi)

ge.d . I

-Geraltary(PTW) · M(Yg) X Miyal carries a til-shifted

Mist

Symplectic Structure , and by Joyce eta

(BBBJ(

MIYilYg, MLY2)
is a derived Critical locks of

a function locally.



Categorified DT inuts from derived Lagrangian
intersection .

Need to show Shifted Symplectic
structures are invt in degenerating family.

-

2 /I/
↑

/ ↓ ↓

S
↓= &Idl Y> -L & ]↓

-

, s↓E I 3 li 12
-

X Y Dr
MXyCh
!

x) M(Y
, h) X

My,cna
II

++ 0 +=0

↓ Crit(f) -deformatie d "Crit (f)
Dr Dj

of derived structure

-Y
t= 0 AI

++ 0

ut P = tot (XmYUY2) Fane 4 fold.

Need to All derived structure is induced

Show -s from ambient space !!!



DerivedCritical locks

ut f ; function on a Smooth scheme I

↓ Crit(f) ; represented by Koszal algebra

(Sym
*

#wil ,af)

·

The Cetangent Complex is a composition

Two R
W



DerivedCritical locks

ut f ; function on a Smooth scheme I

↓ Crit(f) ; represented by Koszal algebra

(Sym
*

#wil ,af)

·

The Cetangent Complex is a composition

If dar
Tw+ 0 - R

W

Shifted Symplectic structure on W is reduced

to the Statement that

tw - Rw

is self-dual !
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Local model for denit locus on MD

Ut XCIP as before ; Fe Coh

Consider -Ent (F ,R) Serve U = EXFCER)
X X

Wis ExtFFe) j W = EXFokR
N2 Ent (F ,Rekp) IN ExCFR)

Ext-algebra with L-o structure

on X 4 = v
Symmetric polys

↳
x =

uv IS Lo products &: Symul-1

↑ takj adjoints
dg-algebra of functions :u 1-Sym(()
at a formal Completion

ofMi& F. &=> e ==z + (-Sym(i))
k>2k!

koszul Complex A = (NU/]) Syni (e , dex
X
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codim +1
↑

Similar L-o algebra Structure of #Ech(IP)

Ap = Syni (191]eWt])Sym (w ,det
IP

Lemma (BKKS , 2024) Let f = [ f eSymul
k>2(+ 1)! k+

then dg-algebra A K (df)
X ↓

koszul
algebra

&mark: This property F ! for App Sincep is
not CY - and 12

:

p
doesnt have Shifted Self-duality-However one can recover A from terms in App
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Introduce new L-a algebra Structure La
+

↳ = Mo = Erge eve

= we wwY = exe) gete,FeeX

↓ Posseses La
products

① Symne->Ex#)
② Symk u with Partial derivatives

⑤ Syntela w- WY
UQW,Wa

v 3 ↓ g

gr

⑨ Sym
*-(4) W- W- k2 I



Introduce new L-a algebra Structure La
+

↳ = Mo = Erge eve

= we wwY = exe) gete,FeeX

↓ Posseses La
products

① Symne->Ex#)
② Symk u with Partial derivatives

Now
,
ew

⑤ Syntela w- WY 3 ↓ g
⑨ Symu) Wow - e k2 I

temma. The products Symculeu , syminow,We
Can be chosen to describe the Canonical L-o algebra

Existence of of defines the
Structure Extp1EF) => two series of products uniquely.



If Uses Kodara vanishing and that

Hi (X , Hom (SymKipl ka)) =o is
Z

Replace IP by total space of normal bundle

IP' : = knlx+ X
↳

ay sheaf I can be viewed
as

derived restriction of its pull backp to

kplx ->X
↳

Ent(ER) and Ent(FR) are viewed

as Cenemology of RHa, (PP) and replace
wit

aIn
3

-x
RHw
,(PP



& The dg-algebra

AtSyn uWw])Sym
is aSymmetric algebra of dg-module

Wili]A-N-A



& The dg-algebra

AtSyn uWw])Sym
is aSymmetric algebra of dg-module

Wili]Ap->WeAP

with differential obtained from (linear) map

N1 -> WSym
* (UV)

T
Induced by g!

& lBKKS 2024) The dg-algebra A Arisato

dg-algebra of dCit (f +g) on UQWW,
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Quasi-BDS Categories for families of

potentials and the Gauss-Manin Connection

on Periodic Cyclic homology·

Consider MCIP) The quasi-smooth Scheme

and Consider family of potentials constructed in

previous Step Mess = fisl + gcs) depending on the

Choice of StH((, () Here derit(f) is

quasi-isom to dy-moduli scheme of rigidified

Complexes M(X(S1) on zero scheme Zcsl=: XC

Padurario -Toda
-: quasi-BP5 category Diss of

M(X(s))
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As a Th-graded Category of Matrix-factorization

of Pest Disl = dy-category of El-graded

loc free sheaves F = EPDE' on MLXs1) with

an odd diff' 8 which satisfies

82 = Pist ·Id

With complexes of morphisms defined by taking
Standard Hom-complexes

&set of morphisms] - Th-graded Vector spaces with
in Desi

odd differential d and even Curvature elements

O d satisfies Leibniz rule
wor.7 composition morphism&

X - Hom(Yax) Exe I② for -Hom (X)DIS)
dif)

=hyt-thx
⑧ fX dhy =oSdidy= 0 & ④ EX , idx has degree 0.



↑ define Hochschild homology of Desi

I
Matrix factorization

category
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define
PT m Hochschild homology of Des

I
Matrix factorization

category

inances II
Y

Periodic Cyclic homology HPS) of Dc

(H
* ) Hoch' (DisI)cul , bur)

diff

↓ Etimov 201
A(S)E Cohomology (in Eariski topology)

I-graded

of the Complex (2( , -d Ps +udar
↓

deRham CpIX .
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Ihm (BKKS 2024) For a good degeneration

IP : X us Y , YYz
=
a flatConnection on a rector bundle over /Al

with Fiber HP)Dest
-

of Mcs)) · In particular

the graded dimension of P(DSI) is Constant

in family.

Demank In theSetting where denit(Misi) < EIPisil
↓

vanishing
the twisted de Rham Complex in above locks

is of-isomorphic to the Sheaf of vanishing cycles

on Miss
, we its cohomology gives categorification

of DT inuts . 2)
Disl can be regarded as higher
level categorification !
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Computation of DT cohomoly

groups over theSpecial fiber.

Given Lagrangians Land M is hol . Sympl med 5

with choice of be and Ken
Thm (Gurringham - Safrana)

2023

↳ot M1 &h)
7↑L --

quantization of
Perverse Sheaf of vanishing

modules over Cycles associated to
Fig = Biol e KItl)

[Th]] Lagrangian intersection.
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Our approach ·· Similar derived geometrically
↳ E

let k and k
M(Y, ) M(Ya)

I I
&

ket) Eoy
s

det (Emyal
*

deformation
deformation S 3 quantization
quantization to left DI9h]]-flat

to left Extr module

DTt]] -flat
k Keit

module MMil MIYe)

S
Est

V
Est

k : =RH (k Odisa
M(Y,)

om

ot
↓

tctVenmismNot
M(Y) Oh-
mesI num

use Bar resoln use Bar resol



Conjecture (BKk> 2024 - partially work in progress

&

[ * (H(LkT = +Ez E

· [DM -D
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Quintic3fold degeneration

*X
E

↳fold

Quintie 37d

Surface
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Generic Picture& S-duality Conjecture
we

Eg :
Quintic3fold degeneration

*X
GRR virdim =3
vir dim= o

dim=Jac noSympt
Smooth

y ↑
-

↳Mumford Suppot
Kg=3) = 1P3



Generic Picture& S-duality Conjecture
we

Eg :
Quintic 3 fold degeneration

F

*X
GRR virdim =3
vir dim= o

dim=Jac noSympt
Smooth

y ↑
-

fibration with↳
Lagrangian

#

a Section

-Ggs S e Kg=3) = 1P3
L

Scri* [+]
PTMs) = ETM,T T (M(Y)Jor

insertion

cohomology
class
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I
C = Ptp=

glI
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