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ABSTRACT

We rewrite the recently proposed differential expansion formula for HOMFLY polynomials of the knot 41 in arbitrary rectangular

representation R = [rs] as a sum over all Young sub-diagrams λ of R with extraordinary simple coefficients Dλtr (r) ·Dλ(s) in front

of the Z-factors. Somewhat miraculously, these coefficients are made from quantum dimensions of symmetric representations of

the groups SL(r) and SL(s) and restrict summation to diagrams with no more than s rows and r columns. They possess a natural

β-deformation to Macdonald dimensions and produces positive polynomials, which can be considered as plausible candidates for

the role of the rectangular superpolynomials. Both polynomiality and positivity are non-evident properties of arising expressions,

still they are true. This extends the previous suggestions for symmetric and antisymmetric representations (when s = 1 or r = 1

respectively) to arbitrary rectangular representations. As usual for differential expansion, there are additional gradings. In the only

example, available for comparison – that of the trefoil knot 31, to which our results for 41 are straightforwardly extended, – one

of them reproduces the ”fourth grading” for hyperpolynomials. Factorization properties are nicely preserved even in the 5-graded

case.

1 Introduction

Superpolynomials are among the main mysteries of modern theoretical physics. There is a lot of evidence, that
they exist, but there is neither a clear conceptual definition nor a clear algorithm for practical evaluation –
despite many efforts during the last two decades. This paper reviews the problem from the most naive direction
and reports some small progress, based on the recent development in adjacent fields.

The story begins from a mysterious discovery that Wilson loop averages

HK
R(A, q) =

〈

TrRP exp

∮

K

A
〉

(1)

in 3d Chern-Simons theory [1], which depend only on the topology of the embedding K →֒ R3, i.e. on the
topology of the knot K, are Laurent polynomials with integer coefficients – when expressed in terms of peculiar

variables q = exp
(

2πi
k+N

)

and A = qN instead of the coupling constant k and rank of the gauge group SU(N).

This fact explains the name knot polynomials [2] for HR, its various reductions at special values of A and q and
generalizations to other gauge groups. HR per se is also known as HOMFLY polynomial, colored by a Young
diagram R, which labels irreducible finite-dimensional representations of SU(N). Integrality property implies
that the coefficients of knot polynomials count something – these can be numbers of certain physical states
in some stringy models [3], underlying the Chern-Simons theory, while in an abstract categorification program
something means just dimensions of some vector spaces. Though K-theory allows ”dimensions” to be negative,
it would be simpler to have them positive – and this was the reason to look for generalization (refinement) of
HR, which should have all the coefficients positive. Convention is that this superpolynomial PK

R (A, q, T ) has all
coefficients positive integers and satisfies the reduction property

PK
R (A, q, T = −1) = HK

R(A, q) (2)

Knot-dependent complexes for which P andH are respectively the Poincare and Euler polynomials are explicitly
constructed for the single-box diagram R = [1] = ✷ at fixed N [4, 5], but calculations are technically involved for
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N > 2 and there are only restricted successes for other representations R. An intriguing possibility is to consider
superpolynomial as a p-adic generalization of HOMFLY [6]. In fact the number of additional arguments can be
larger than two, q −→ {q,−qT } −→ {qi} are often thought as relatives to parameters of Kerov polynomials,
and at least three-parametric deformations are already considered, both in the context of knot polynomials
[7, 8] and for the closely related DIM-algebras [9, 10]. The literature on superpolynomials and their physical
interpretation is rich, see, for example, [11]-[29].

If there is any commonly accepted definition today, then it describes the superpolynomial as
1) a Laurent polynomial PK

R (a,q, t) with all coefficients positive integers,
2) reproducing HOMFLY at t = −1,
3) reproducing Khovanov-Jones polynomial at a = q2

4) reproducing Khovanov-Rozansky at a = qN

The problem with this ”definition” is that Khovanov’s is an explicit, but ad hoc construction, which is
largely technical and not quite related with the ”best” available conceptual definitions of HOMFLY – either
from functional integrals and quantum-group theory or from various recursions. While HOMFLY are defined
(at least mnemonically) in (1) as 3d topological invariants, Khovanov’s construction is in terms of knot diagrams
– the knot’s projections on 2d planes, with topological invariance substituted by Reidemeister invariance, which
is natural for representations of braids, but is only respected, but not fully explicit, in Khovanov’s approach.
Khovanov’s complex is built with the help of a hypercube of colorings [4, 37, 38], and direct relation to the
quantum-R-matrix Reshetikhin-Turaev formalism [39, 40, 41] is available only at N = 2, where a peculiar
Kauffman’s R-matrix [42] can be used. Khovanov-Rozansky generalization to N > 2 involves sophisticated
matrix-factorization technique, which is very hard to use in practical calculations. Partly for this reason the
construction of colored superpolynomials is still unclear, especially in non-rectangular representations.

Thus it is not a big surprise that there is a continuous search for a simpler and more straightforward
definitions of superpolynomials and/or reformulations of HOMFLY calculus, which would allow to describe
superpolynomials as natural and unambiguous deformations.

At advanced level the story is about refined Chern-Simons and, more generally, refined topological strings –
which is now linked to a deformation from loop Kac-Moody to toroidal Ding-Iohara-Miki algebras [10]. However,
applications to knot theory are still work in progress. The real issue here is that knot theory in appropriate
formulation is almost identical to representation theory, but is in fact a little more stable: knot theory can
survive deformations which break the representation theory structures. The two recent examples are:

(i) applicability of Vogel’s universality [30] to knots (knot invariants in the E8-sector contain Vieta-like
combinations of the roots of certain universal polynomials, rather than the roots themselves, which represent
particular quantum dimensions – and thus possess simple universal expressions, even when dimensions fail to
do so [31]), and

(ii) pretzel knot polynomials are expressed through bilinear combinations of Racah matrices (6j-symbols)
[32], and these possess nice β-deformations [26], while this is not true for the 6j-symbols themselves.

Precise identification of this ”healthy” part of representation theory, which in practice is captured by con-
sideration of knot polynomials, remains a puzzling open question – and this is a probable reason for persisting
problems with adequate definition and evaluation of super- and hyper-polynomials.

At naive level attempts are made to deform HOMFLY into superpolynomials for particular families of
knots. If there is any canonical construction of this type, applicable universally to all knots, it should reveal
and take into account the representation dependence of HOMFLY, because in any particular representation
superpolynomials are believed to involve more knot invariants than HOMFLY, and balance is restored (if at
all) only for the entire set of polynomials in all representations.

In this paper we report new results in the most promising approach of this kind – the one based on the
differential expansions [11, 17, 33, 8, 34, 35]. The point is that colored HOMFLY can be re-expanded in powers
of the differentials Dn = {Aqn} = Aqn − 1

Aqn
, and these expansions have more pronounced representation

dependence than original polynomials. Moreover, the differentials Dn are directly related to differentials in
Khovanov-Rozansky complexes [11], and the formalism naturally simplifies transition to superpolynomials. The
method is most adequate for a family of twisted knots (see below), where it allowed to fully describe HOMFLY
and superpolynomials in arbitrary symmetric representation and derive various recursions in R, which serve as
a model for more complicated knots and links. Complexity of the differential expansion is regulated by a defect

[35], which is actually a degree in q2 of the fundamental Alexander polynomial in topological framing minus
one. What distinguishes twisted knots is that they have defect zero and the differential expansion is actually
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strengthened to one in Z-factors, which are bilinear combinations Zn|m = DnD−m = {Aqn}{A/qm}, and have
a very clear superpolynomial deformation to Zn|m = {Aqn}{A/tm}.

In this paper we use the recently discovered HOMFLY polynomials in all rectangular representations and
their differential expansion for the figure-eight knot 41 [36] to conjecture the corresponding rectangular twisted
superpolynomials, which are in accord with various previous speculations. Also straightforward in this case is
the next, forth grading [7], which seems to be naturally built into the differential-expansion formalism [8].

Comparison with alternative approaches, involving c-factors [13], DAHA algebra (a part of DIM) [14, 25, 24],
Verlinde algebras [12], T -deformed R-matrices [43, 44] etc is very desirable, but such strong results are not yet
available there. Hopefully this paper will stimulate new progress in these other directions. Also of interest are
generalizations to other defect-zero knots. Really challenging remain the cases of non-vanishing defects and
especially of non-rectangular representations, where the structure of differential expansion remain obscure and
sometime questioned is the very existence of superpolynomials (see [47, 48, 49] for partial description of the
simplest R = [21] and R = [31] cases). Last, but not the least, reduction of superpolynomials to finite N and
the difference between reduced and unreduced superpolynomials are not yet captured by differential expansion
tools – therefore in this paper we deal only with reduced superpolynomials at generic A.

The main results of this paper are eqs.(17) and (32).
The first is a strong and inspiring reformulation of the recent result of [36], and it is based on an amusing

decomposition formula (9) for binomial coefficients, specific for rectangular representations.
The second is immediate, though non-trivial, lift to superpolynomials.
In addition to this we discuss two extra gradings (one of them – related to that of [7] and [8]), which are

implied preserve the nice factorization properties of the polynomials and can deserve further investigation.

2 Reinterpretation of the formula for rectangular HOMFLY

Differential expansion can be considered as a q-deformation of the formula for special polynomials [13, 50],
arising from reduced HOMFLY in the limit q = 1: for any knot K and in any representation R

HK
R (q = 1, A) =

(

HK
✷
(q = 1, A)

)|R|

(3)

Moreover, in topological framing reduced HOMFLY turns into unity, when A = q±1, what means that

HK
✷
(q, A) = 1 + FK

✷
(q, A) · {Aq}{A/q} (4)

with {x} := x−x−1 and some function FK
✷
(q, A), which for the figure-eight knot K = 41 is just unity. It follows

that the special polynomial

H41
R (q = 1, A) =

(

1 + {A}2
)|R|

=

|R|
∑

k=0

(|R|
k

)

{A}2k (5)

Differential expansion [17, 33, 8, 35] substitutes the q-independent powers {A}2k and binomial coefficients
by more involved representation-dependent k-linear combinations of Z-factors Zi|j = {Aqi}{A/qj} with q-
dependent coefficients. The structure of this deformation strongly depends on the ”defect” of the knot [35],
which is miraculously regulated by the power of Alexander polynomial H

✷
(q, A = 1), arising from HOMFLY at

A = 1, and is not fully revealed yet.
The biggest achievement at this moment is the recently suggested in formula [36] for the differential expansion

of rectangular HOMFLY polynomials for 41

H41
[rs] =

min(r,s)
∑

F=0

∑

0≤aF <...<a3<a2<a1<r

0≤bF<...<b3<b2<b1<s

F∏

f ′<f ′′

(
[af ′ − af ′′ ][bf ′ − bf ′′ ]

[af ′ + bf ′′ + 1][af ′′ + bf ′ + 1]

)2

·

·
F∏

f=1



haf+bf+1

(
[af + bf ]!

([af ]![bf ]!

)2
[r + bf ]![s+ af ]!

[r − 1− af ]![s− 1− bf ]!
(
[af + bf + 1]!

)2

af∏

if=−bf

{Aqr+if }{Aqif−s}



 (6)

and its further deformation to arbitrary twisted knots in [46]. For convenience we introduced here the forth-
grading [7, 8] parameter h, which counts the number of Z-factors – actually, for HOMFLY h = 1. Quantum

numbers are defined as [x] = {qx}
{q} = qx−q−x

q−q−1 .

3



Our primary task in this paper is to reveal the structure of this complicated expression and rewrite it in a
very simple form (17).

The first observation is that the sum in (6) is actually over Young diagrams λ, which are sub-diagrams of
rectangular R = [rs]:

H[rs](41)
(6)
=

∑

λ⊂[rs]

h|λ| · C[rs]
λ (q) · Zλ

r|s(A, q) (7)

where the A-dependent Zλ
r|s, underlined in (6), is a product of ”shifted” Z-factors

Zλ
r|s(A, q) =

∏

�∈λ

Z
(a′(�)−l′(�))
r|s =

∏

�∈λ

{Aqr+a′(�)−l′(�)}{Aq−s+a′(�)−l′(�)} (8)

The second observation is that the A-independent coefficients Cλ have a very simple form. To understand
this it is necessary first to return to (5) and decompose binomial coefficients into contributions of Young sub-
diagrams. Namely, for factorized |R| = rs there is a remarkable decomposition:

(
rs

k

)

=
(rs)!

k! (rs− k)!
=
∑

|λ|=k

dλtr (r) · dλ(s) (9)

where

dλ(N) =
∏

�∈λ

N − l′(�) + a′(�)

a(�) + l(�) + 1
(10)

✛

✻

✲

❄

a′

l′

a

l

is dimension of representations λ of the Lie algebra slN , while a, l, a′, l′ are arms, legs, co-arms and co-legs,
associated with a box � inside the Young diagram. The simplest particular cases of (9) are:

(
rs

2

)

=

(
r + 1

2

)(
s

2

)

+

(
r

2

)(
s+ 1

2

)

= d[2](r) · d[11](s) + d[11](r) · d[2](s)

(
rs

3

)

=

(
r + 2

3

)(
s

3

)

+4 ·
(
r + 1

3

)(
s+ 1

3

)

+

(
r

3

)(
s+ 2

3

)

= d[3](r) ·d[111](s)+d[21](r) ·d[21](s)+d[111](r) ·d[3](s)
. . .

and it is easy to check that at q = 1 the sophisticated coefficients in (6) are given by exactly these formulas.
Decomposition (9) follows from the Cauchy identity in the form

exp

(
∞∑

k=1

(−h)kpkp̄k
k

)

=
∑

λ

h|λ| · Schurλtr{p} · Schurλ{p̄} (11)

for all pk = r and p̄k = s. Indeed, for this choice of time-variables

Schurλ{all pk = r} = dλ(r) (12)

and the identity reduces to

(1 + h)rs =
∑

λ

h|λ| · dλtr (r) · dλ(s) (13)

It is now clear what the q-deformation is: the quantum version of (12) is

S∗
λ(N |q) = Schurλ{pk = p∗k} = Dλ(N) (14)

where the time-variables are restricted to topological locus

p∗k =
{Ak}
{qk}

A=qN

=
[Nk]

[k]
(15)
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and Dλ(N) are quantum dimensions of representation λ of the quantum group Uq(slN):

Dλ(N) =
∏

�∈λ

[N − l′(�) + a′(�)]

[a(�) + l(�) + 1]
(16)

Surprisingly or not, this quantum deformation provides the q-dependent coefficients in (6) and it acquires
the very explicit and simple form (7):

H41
[rs](q, A)

(6)
=

∑

λ⊂[rs]

h|λ| ·Dλtr (r) ·Dλ(s) · Zλ
r|s(A, q) (17)

with Z-factors (8).

Since Dλtr (N |q) = Dλ(N, q−1), while Zλtr

r|s (A, q) = Zλ
s|r(A, q

−1), we get the usual symmetry property

H[rs](q, A) = H[sr ](q
−1, A). Since Dλ(r) vanishes for all λ with more than r columns, the sum in (17) is

automatically restricted to λ with no more than r columns and s rows, i.e. to sub-diagrams of the original
R = [rs].

In somewhat more abstract language the Cauchy identity is the well-known decomposition of GL(V ) ×
GL(W )-module

Λ∗
h(V ⊗W ) =

∑

λ

h|λ|SλV ⊗ SλtW, (18)

and the classical dimensions are just

dλ(N) = dimSλ(C
N ) (19)

and if we view

x = qr, y = qs (20)

as equivariant parameters and {x} = x− x−1 – as the K-theoretical A-genus [9], then

H41
[rs]

(17)
= 1+

∑

λ

h|λ|
∏

�∈λ

{xqa′
�
−l′

�}{yql′�−a′
�}

{qa�+l�+1}{qa�+l�+1}{Axq
l′
�
−a′

�}{Ay−1ql
′
�
−a′

�} (21)

is actually the Lefshetz fixed-point formula [45], applied to a certain sheaf on the Hilbert scheme (fixed points
of the torus action are labeled by Young diagrams). This means that all rectangular HOMFLY polynomials can
be read out of the (q, q)-equivariant Euler characteristic of a certain sheaf (universal for all representations).

Now it is natural to consider (q, t)-equivariant characteristics, i.e. to relax the condition q = t to t = qβ .

3 β-deformation

The universal part of the β-deformation of differential expansions is the change of the Z-factors:

Z
(i|j)
r|s = {Aqr+i−j}{Aq−s+i−j} −→ Z(i|j)

r|s = {Aqr+i/tj}{Aqi/ts+j} =

= (−)r+1 ·
(

a2qr−s+2 i−2 jtr+2 i+1 + qr+str +
1

qr+str
+

1

a2qr−s+2 i−2 jtr+2 i+1

)

(22)

which, modulo an overall sign, is a positive Laurent polynomial in the DGR variables [11]

q = t t = −q/t a = A
√

t/q, (23)

For composite Z-factors (8) the shifts i and j are well defined as a′ and l′ respectively, and (22) implies

Zλ
r|s(q, A) → Zλ

r|s(q, t, A) =
∏

�∈λ

Z
(a′

�
|l′
�
)

r|s =
∏

�∈λ

{Aqr+a′

�/t
l′
�}{Aqa

′

�/t
s+l′

� } (24)
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Challenging is the deformation of the coefficients in front of the Z-factors. For figure-eight knot the suggestion
of [17] was to rewrite the formula for symmetric HOMFLY in the form, where all the coefficients are just unities:

H41
[r](q, A) = 1 +

r∑

k=1

[r]!

[k]![r − k]!

k−1∏

i=0

{Aqr+1}{Aqi−1} =

r∑

k=0

∑

1≤i1<...<ik≤r

Zi1(A)Zi2 (Aq) . . . Zik(Aq
k−1), (25)

where in this case the relevant Z-factors are

Zi(A) = {Aq2(r−i)+1}{A/q} (26)

Since r − i ≥ 0 they are naturally deformed Zi(A) → Zi(A) = {Aq2(p−i)+1}{A/t}, and the deformation
(symmetric superpolynomial) is just

P 41
[r] (q, t, A) =

r∑

k=0

∑

1≤i1<...<ik≤r

Zi1(A)Zi2 (Aq) . . .Zik(Aq
k−1) = 1 +

r∑

k=1

[r]q !

[k]q![r − k]q!
︸ ︷︷ ︸

M
t−1,q−1

[1k ]
(A=qr)

k−1∏

i=0

{Aqr+i}{Aqi/t} (27)

i.e. the binomial coefficients actually remain intact – the ratios of q-numbers, while t appears only in the Z.
Conversely, for antisymmetric representations binomial coefficients are made fully from the t-numbers:

P 41
[1s](q, t, A) = 1 +

s∑

k=1

[s]t!

[k]t![s− k]t!
︸ ︷︷ ︸

M
q,t

[1k]
(A=ts)

k−1∏

i=0

{A/ts+1}{Aq/ti} (28)

In these formulas we showed also, that the binomial coefficients are expressible through Macdonald dimensions

M q,t
R (A) – the values of Macdonald polynomials M q,t

R {p} at the topological locus pk = p∗k(A, t) :=
{Ak}
{tk} ,

M q,t

[1] (A) =
{A}
{t}

M q,t

[2] (A) =
{A}{Aq}
{t}{qt} M q,t

[11](A) =
{A}{A/t}
{t}{t2}

M q,t

[3] (A) =
{A}{Aq}{Aq2}
{t}{qt}{q2t} M q,t

[21](A) =
{A}{Aq}{A/t}

{t}2{qt2} M q,t

[111](A) =
{A}{A/t}{A/t2}

{t}{t2}{t3}

M q,t

[4] (A) =
{A}{Aq}{Aq2}{Aq3}
{t}{qt}{q2t}{q3t} M q,t

[31](A) =
{A}{Aq}{Aq2}{A/t}

{t}2{qt}{q2t2} M q,t

[22](A) =
{A}{Aq}{A/t}{Aq/t}

{t}{t2}{qt}{qt2}

M q,t

[211](A) =
{A}{Aq}{A/t}{A/t2}

{t}2{t2}{qt3} M q,t

[1111](A) =
{A}{A/t}{A/t2}{A/t3}

{t}{t2}{t3}{t4}
. . . (29)

Note that sums in both expressions (27) and (28) for symmetric and antisymmetric R = [r] and R = [1s] involve
only single-row??? diagrams [1k], but differ by the change (q, t) −→ (t−1, q−1), which also applies to the values
of p∗k – the change is performed directly in (29). It also deserves noting that this change is the usual ingredient
of the transposition rule for Macdonald polynomials

M q,t

λtr{pk} = M t−1,q−1

λ

(

−{tk}
{qk}pk

)

·
∏

�∈λ

(

−{ql�ta�+1}
{ql�+1ta�}

)

(30)

which substitutes the simple one for Schur functions,

Schurλtr{pk} = (−)|λ| · Schurλ{−pk} =⇒ Dλtr (N |q) = Dλtr (N |q−1) = (−)|λ| ·Dλ(−N |q) (31)

6



Combining this observation with the new expression (17) for combinatorial coefficients, one can easily guess
the β-deformation of all rectangular HOMFLY polynomials. In abbreviated notation the suggestion is

P 41
[rs](q, t, A) =

∑

λ⊂[r]s

h|λ| · Mtr
λtr (r) ·Mλ(s) · Zλ

r|s (32)

with the Z-factor from the r.h.s. of (24). More explicitly,

P 41
[rs](q, t, A) =

∑

λ

h|λ| ·

Mtr

λtr (r)
︷ ︸︸ ︷

M t−1,q−1

λtr (A = qr) ·

Mλ(s)
︷ ︸︸ ︷

M q,t
λ (A = ts) ·Zλ

r|s =

=

p
∑

k=1

h|λ| ·M t−1,q−1

λtr

(

pi =
{q−ri}
{q−i}

)

·M q,t
λ

(

pi =
{tsi}
{ti}

)

· Zλ
r|s =

= 1 +
∑

λ⊂[rs]

h|λ|
∏

�∈λ

{qr−a′

� t
l′
�}

{tl�qa�
+1}

{ts−l′
� q

a′

� }
{tl�+1qa�}

{Aqr+a′

� t−l′
�}{Aqa

′

� t
−s−l′

� }
︸ ︷︷ ︸

contr
λ

(33)

The sign of the Z factor, originating from (−)r+1 in (22), is compensated by exactly the same sign, arising in
Mtr

λtr (r) after the change (23). A more serious problem could be that, in variance with quantum dimensions
Dλ(N |q), Macdonald dimensions Mλ(N |q) are not Laurent polynomials, even for concrete integer values of N .
Surprisingly or not, however, the numerators disappear after summation over all sub-diagrams λ (actually, they
do so in every order in |λ|), and (33) is always (Laurent) polynomial and positive in the DGR variables
(23)! Eq.(33) reproduces all previously suggested formulas for colored super- and hyper- polynomials of 41 (and
also 31), with the single exception of that in [26] (which, however, deviates already from the conventional answer
for the fundamental representation with r = s = 1).

4 Polynomiality

To demonstrate how polynomiality emerges it deserves providing a couple of examples.

In the case of representation R = [2] contributing are just three sub-diagrams

contr
[ ]

= 1

contr
[1]

= [2]q{Aq2}{A/t} → a2q2t4 +
1

a2q2t4
+ a2t2 +

1

a2t2
+ q4t3 +

1

q4t3
+ q2t +

1

q2t

contr
[2]

= {Aq2}{A/t}{Aq3}{Aq/t} →

→ a4q4t8+
1

a4q4t8
+a2q6t7+

1

a2q6t7
+a2q4t5+

1

a2q4t5
+
a2t

q2
+

q2

a2t
+a2t3+

1

a2t3
+q6t4+

1

q6t4
+q2t2+

1

q2t2
+2

There is exactly one diagram in each order |λ|, thus each of the tree contributions is per se a positive polynomial.

In the case of representation R = [2, 2] the number of contributing sub-diagrams is already six:

contr
[ ]

= 1

contr
[1]

= [2]q [2]t{Aq2}{A/t2} →

→ a
2
q
2
t
4 +

1

a2q2t4
+

q
2

a2t2
+

a
2
t
2

q2
+a

2
t
4 +

1

a2t4
+a

2
t
2+

1

a2t2
+q

6
t
3 +

1

q6t3
+q

4
t
3 +

1

q4t3
+q

4
t+

1

q4t
+q

2
t+

1

q2t
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contr
[2]

= [2]t
{qt2}

{qt}
{Aq3}{Aq2}{Aq/t2}{A/t2} →

(

q
2 + 1

) (

q
3
t− 1

) (

q
3
t+ 1

) (

a
2
t+ q

4
) (

a
2
t
3 + q

2
) (

a
2
q
4
t
5 + 1

) (

a
2
q
6
t
7 + 1

)

a4q10t8 (q2t− 1) (q2t+ 1)

contr
[1,1]

= [2]q
{q2t}

{qt}
{Aq2}{Aq2/t}{A/t2}{A/t3} →

(

q
2
t
2 + 1

) (

q
3
t
2 − 1

) (

q
3
t
2 + 1

) (

a
2
t+ q

4
) (

a
2
t+ q

6
) (

a
2
q
2
t
5 + 1

) (

a
2
q
4
t
5 + 1

)

a4q10t8 (q2t− 1) (q2t+ 1)

contr
[2,1]

= [2]q [2]t{Aq2}{A/t2}{Aq3}{Aq/t2}{Aq2/t}{A/t3} →

→

(

q
2 + 1

) (

q
2
t
2 + 1

) (

a
2
t+ q

4
) (

a
2
t+ q

6
) (

a
2
t
3 + q

2
) (

a
2
q
2
t
5 + 1

) (

a
2
q
4
t
5 + 1

) (

a
2
q
6
t
7 + 1

)

a6q14t12

contr
[2,2]

= {Aq2}{A/t2}{Aq3}{Aq/t2}{Aq2/t}{A/t3}{A ∗ q3/t}{Aq/t3} →

→
1

a8t16q16

(

a
2
t+ q

4
) (

a
2
t+ q

6
) (

a
2
t
3 + q

2
) (

a
2
t
3 + q

4
) (

a
2
q
2
t
5 + 1

) (

a
2
q
4
t
5 + 1

) (

a
2
q
4
t
7 + 1

) (

a
2
q
6
t
7 + 1

)

Two of them have the same size
∣
∣
∣[2]
∣
∣
∣ =

∣
∣
∣[1, 1]

∣
∣
∣, and their individual contributions have non-positive factors both

in the denominators and the numerators. However, when added, they provide a positive polynomial. Moreover,
they still produce a polynomial, if added with the coefficients c[2] and c[11], provided

c[2] − c[11] ∼ {qt} (34)

5 Plethystic logarithm of the series

All rectangular figure-eight superpolynomials are made from a single series:

K41 := 1 +
∑

λ

h|λ|
∏

�∈λ

{xq−a′

� t
l′
�}

{tl
�
qa�

+1}
{yt−l′

�q
a′

� }
{tl�+1qa�}

{Axqa
′

� t
−l′

�}{Aqa
′

�y−1t
−l′

�} =

= 1+ h · {x}{y}{q}{t} {Ax}{A/y}+ h2 ·
({x}{x/q}{y}{yq}

{q}{q2}{t}{qt} {Ax}{Axq}{A/y}{Aq/y} +

+
{x}{xt}{y}{y/t}
{t}{t2}{q}{qt} {Ax}{Ax/t}{A/y}{A/(yt)}

)

+O(h3) (35)

Superpolynomials can be obtained by the specialization

P 41
[rs] = K (x = qr, y = ts) (36)

It turns out that this series is a symmetric power of a more simple series L:

K(x, y, A, q, t, h) = Sym∗(L) := exp

(
∞∑

d=1

L(xd, yd, Ad, qd, td, hd)

d

)

(37)

If one opens the brackets {. . .}, expansion of K up to h3 involves more than 900 items. At the some time its
plethystic logarithm L is much simpler:

L41 =
{x}{y}{Ax}{A/y}

{q}{t} ·
{

h − h2 ·
(
α+ α−1

)
+ (38)

+h3 ·
(

α2(q2 + t−2 − x2 − y−2)− αq

t
(x−2 + y2) + 1− t

αq
(x2 + y−2) + α−2(q−2 + t2 − x−2 − y2)

)

−O(h4)

}

where α = A2q/t. It would be interesting to find the meaning and the general term of this new expansion.
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6 Rectangular superpolynomials for the trefoil

Figure-eight is the simplest representative of the family of twist knots, which all have defect zero and thus possess
a comparably simple differential expansion. The difference between twist knots is that the contribution of each
diagram λ ⊂ R contains an additional factor Fλ, which was found for the (anti)symmetric representations in
[33], and extended to arbitrary rectangular HOMFLY just recently in [46].

The β-deformation of the F -factors is a separate problem, but in the particular case of the trefoil 31 –
another member of the twist knot – family it is simple. In this case the factors F 31

λ and their β-deformations
are no more than simple monomials. The answer is actually known for symmetric representations since [13, 17]
and [33]. and generalization of our newly-discovered (32) to the case of 31 is

P 31
[rs](q, t, A) =

∑

λ⊂[r]s

h|λ| ·
(
−A2q/t

)|λ|

(
∏

�∈λ

q2a�t−2l�

)

︸ ︷︷ ︸

F
31
λ

·Mtr
λtr (r) ·Mλ(s) · Zλ

r|s (39)

Like in the case of 41 this formula produces positive Laurent polynomial – despite particular items in the sum
are non-polynomial. In the example of sec.4 this is because the condition (34) is fulfilled by the factors c[2] = F31

[2]

and c[11] = F31
[11]. Criteria of this kind can be used to define the β-deformation of the F -factors from [46] for all

other twist knots.
Important thing is that 31 is not only twist, but also a torus knot, thus this result can be compared with the

torus hyperpolynomials from [14] and their 4-grading generalizations [7], which for rectangular representationsR
are believed to provide the true superpolynomials (i.e. should coincide with the future calculation in Khovanov’s
approach). The result of this comparison is positive: (39) reproduces Cherednik’s polynomials [14] and their
generalizations. In Cherednik’s case it is sufficient to substitute A2 −→ −A2. To reproduce quadruply graded
knot homologies of [7] for 31 and 41, one inserts an additional parameter σ into the differentials, i.e. further
deforms the Z-factors, leaving the coefficients intact:

P31
[rs] =

∑

λ⊂[r]s

h|λ| ·
(
−A2q/t

)|λ|

(
∏

�∈λ

q2a�t−2l�

)

︸ ︷︷ ︸

F
31
λ

·Mtr
λtr (r) · Mλ(s) ·

∏

�∈λ

{Aqr+a′

�/σt
l′
�}{Aqa

′

�σ/t
s+l′

� } (40)

and then make the change of variables:

σ → t−s
r , q → −qtc, t → q/tr, A → a

√
−trtc (41)

(in these last formulas indices r and c are original notation of [7], this r has nothing to do with the diagram
R = rs, however, the exponent s in the substitute of σ is the number of columns in R). In the case of 31 this
extends the original suggestion of [8] from (anti)symmetric to all rectangular representations. In the case of 41
there are no formulas in [7] beyond (anti)symmetric case, thus (40) with eliminated F -factor, F41

λ = 1 is only
a conjecture.

7 Factorization properties

Despite this is not a priori requested, rectangular superpolynomial (33) has the following algebraic properties,
which generalize factorization rules for HOMFLY at roots of unity [19, 51]:

at q = 1 : P[rs] =
(
P[1s]

)r
for all h, A and t

at t = 1 : P[rs] =
(
P[r]

)s
for all h, A and q

at q2n = 1 : P[rs] · P[ns] = P[(r+n)s] for all h, A and t

at t2m = 1 : P[rs] · P[rm] = P[rs+m] for all h, A and q

(42)

The difference relations from [17, 19, 8] are also generalized – to 5-graded polynomials S(A, q, t, σ, h):
S[rs1 ]

− S[rs2 ]
is divisible by h{Aσ/ts}{Aqr1+r2/σ}

S[rs1 ] − S[rs2 ] is divisible by h{Aqr/σ}{Aσ/ts1+s2} (43)

9



Also, in the infinitesimal vicinity of the point q = t = 1 we have for our rectangular superpolynomials:

d(HR −H
|R|
[1] )

dq

∣
∣
∣
∣
∣
∣
q=t=1

= νRσ
|R|−2
1 σ2

d(HR −H
|R|
[1] )

dt

∣
∣
∣
∣
∣
∣
q=t=1

= −νRtσ
|R|−2
1 σ2, (44)

where

νλ =
∑

i

λi(λi − 1), (45)

and σ1, σ2 are the lowest special polynomials. In particular,

d(H[1s] −Hs
[1])

dq

∣
∣
∣
∣
∣
q=t=1

= 0

d(H[r] −Hr
[1])

dt

∣
∣
∣
∣
∣
q=t=1

= 0, (46)

Eqs.(44) validate the conjecture (15) of [52] for all rectangular representations R, at least in the case of the
figure-eight knot.

8 Conclusion

In this paper we reported a substantial new space in the construction of colored superpolynomials: the answer
(32) is suggested for the figure-eight knot, which is non-torus. The suggestion is for all rectangular representa-
tions R = [rs] and it is always positive. It reproduces the previous suggestions [11, 17, 20, 7, 29] for symmetric
and antisymmetric representations [r] and [1s] – on which there seems to be a consensus in the literature (with
the single exception of [26]).

The answer (17) is an immediate (most naive) deformation of the recently suggested [36] formula for rectan-
gular HOMFLY – after it is rewritten in the elegant form (17), which is another achievement of this paper. It
has an amusingly suggestive structure – which, however, is specific for rectangular representations and remains
to be better understood.

Further generalizations to non-rectangular representations and other knots should follow. Especially hopeful
is the situation with twisted knots in rectangular representations, where HOMFLY was recently found in [46].
All these suggestions are based on the study of differential expansion [17, 33, 8, 35], which strongly depends on
the defect of the knot [35]. Thus the natural sequence of steps would be to first look at twisted knots, then at
other knots with defects zero and minus one – and then proceed to knots with positive defects, including the
torus ones, for which the hyperpolynomials were suggested by I.Cherednik [14]. These torus hyperpolynomials
are also positive in rectangular representations and thus have good chances to be rectangular superpolynomials
– thus they can be compared with the implications of differential expansion, when they will be found. There
is, however, a considerable work to do in this direction.
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