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Introduction
Let g be a Lie algebra with a basis ei, i = 1, . . . , n. Suppose

we have a vector space decomposition

g = g+ ⊕ g−, (1)

where g+ and g− are subalgebras in g. The simplest example is
the Gauss decomposition of the matrix algebra into the sum of
upper and law triangular matrices.

Let us consider the following non-linear system of ODEs

dU

dt
= [π+(U), U ], U(0) = U0. (2)

Here

U(t) =

n∑
1

ui(t) ei,

and π+ denotes the projector onto g+ parallel to g−. Very often
we denote by X+ and X− the projections of the element X on
g+ and on g−, respectively. For simplicity, we assume that the
algebra g is embedded in a matrix algebra.



Proposition (Adler-Kostant-Symes scheme). The
solution of the Cauchy problem (2) is given by the formula

U(t) = A(t)U0A
−1(t), (3)

where the function A(t) is defined as the solution of the
following factorization problem:

A−1B = exp (−U0 t), A ∈ G+, B ∈ G−. (4)

Here G+ and G− are the Lie groups of the algebras g+ and g−,
respectively.

Proof. Differentiating (3) by t, we get

Ut = At U0A
−1 −AU0A

−1AtA
−1 = [AtA

−1, U ].

From (4) it follows that

−A−1AtA−1B +A−1Bt = −U0A
−1B.

The latter relation is equivalent to the equality

−AtA−1 +BtB
−1 = −AU0A

−1.

Projecting it onto g+, we get AtA−1 = U+, which proves the
equality (2).



Integrals of motion, symmetries and Lie theorem

We associate with any dynamical system

d ui
dt

= Fi(u1, . . . , un), i = 1, . . . , n . (5)

the vector field

XF =

n∑
k=1

Fk
∂

∂uk
. (6)

It is clear that function J(u1, . . . , un) is a first integral iff

XF (J) = 0.

Thus, first integrals of a dynamical system can be defined as
elements of the kernel space for the corresponding vector field
XF .



Any function of first integrals is a first integral. Only
functionally independent first integrals it is important to count.

Definition. First integrals φk(u1, . . . , un), k = 1, . . . ,m
are called functionally independent if the Jacobi matrix

D(φ1, . . . , φm)

D(u1, · · · , un)
=

∣∣∣∣∣∣∣
∂φ1
∂u1

· · · ∂φ1
∂un

...
...

∂φm
∂u1

· · · ∂φm
∂un

∣∣∣∣∣∣∣
has maximal rank.

Symmetries
The next fundamental concept of the local theory of

nonlinear ODEs is the infinitesimal symmetry.
Definition. A vector field

XG =

n∑
k=1

Gk(u1, u2, . . . , un)
∂

∂uk
,

is called (infinitesimal) symmetry of dynamical system (5) iff

[XF , XG] = 0. (7)



Lie’s Theorem.

Both first integrals and symmetries are very useful if we
want to integrate dynamical system (5) by quadratures.

Suppose we know n− 1 functionally independent first
integrals I1, . . . , In−1 of (5). Making a change of variables

û1 = φ1(u1, . . . , un) , û2 = I1(u1, . . . , un) , . . . , ûn = In−1(u1, . . . , un) ,

for some φ1, we get a system of the form

dû1
dt

= f̂1(û1, . . . , ûn),
dû2
dt

= 0, . . . ,
dûn
dt

= 0,

which can be easily integrated in quadratures.

The procedure of integrating (5) if n− 1 symmetries

X1 =

n∑
k=1

G1
k

∂

∂uk
, X2 =

n∑
k=1

G2
k

∂

∂uk
, . . . , Xn−1 =

n∑
k=1

Gn−1k

∂

∂uk

(8)
are given, is not so standard.



For an efficient use of symmetries (8) we have to impose
some restrictions on the structure of the Lie algebra generated
by the vector fields Xi. The simplest version of a statement of
such a sort reads as follows.

Theorem. Suppose dynamical system (5) has (n− 1)
symmetries (8) such that

the matrix 
F1 F2 . . . Fn
G1

1 G1
2 . . . G1

n

· · · · · · · · · · · ·
Gn−11 Gn−12 . . . Gn−1n

 (9)

is non-degenerate;
and

[Xi, Xj ] = 0, 1 6 i, j 6 n− 1.

Then (5) can be integrated in quadratures.



Proof. It turns out that we can explicitly find a
transformation σ of the form

û1 = φ1(u1, . . . , un) , . . . , ûn = φn(u1, . . . , un) . (10)

such that

σ(XF ) =
∂

∂û1
, σ(Xi) =

∂

∂ûi
, i = 1, . . . , n− 1.

Indeed, the unknown functions φi(u1, . . . , un) must satisfy the
following system of equations

XF (φ1) = 1, XF (φi) = 0, i > 1

Xi(φj) = δij .



In particular, the function φ1 satisfies the following conditions

XF (φ1) = 1, X1(φ1) = 0, . . . , Xn−1(φ1) = 0.

Let us consider these relations as system of algebraic linear

equations with respect to unknowns zi =
∂φ1
∂ui

. Since the

determinant of matrix (9) is not zero, the system has an unique
solution. It follows from the Frobenious Theorem that
∂zj
∂ui

=
∂zi
∂uj

.

Now, to reconstruct the function φ1 one has to perform a
sequence of integrations with respect to variables u1, u2, . . . , un.
In the similar way we can find the functions φ2, . . . , φn.

More general statement which involves both integrals and
symmetries can be formulated as follows



Theorem. Suppose dynamical system (5) has k
symmetries of the form (8) and (n-k-1) functionally independent
first integrals I1, . . . , In−k−1 such that

the matrix 
F1 F2 . . . Fn
G1

1 G1
2 . . . G1

n

· · · · · · · · · · · ·
Gk1 Gk2 . . . Gkn


has the maximal rank;

[Xi, Xj ] = 0, 1 6 i, j 6 n− 1.

and

Xi(Ij) = 0, 1 6 i 6 k, 1 6 j 6 n− k − 1.

Then (5) can be integrated in quadratures.



Hamiltonian properties

The Hamiltonian structure establishes relations between
first integrals and symmetries.

Suppose we have a manifold with coordinates y1, . . . , ym.
Any Poisson bracket between functions f(y1, . . . , ym) and
g(y1, . . . , ym) is given by the formula

{f, g} =
∑
i,j

Pi,j(y1, . . . , ym)
∂f

∂yi

∂g

∂yj
, (11)

where Pi,j = {yi, yj}. The functions Pij are not arbitrary, since
by definition we must have

{f, g} = −{g, f},

{{f, g}, h}+ {g, h}, f}+ {{h, f}, g} = 0.

The algebra of all polynomials in the variables yi, endowed by
the operation {·, ·}, is called Poisson algebra.



Formula (11) can be rewritten as

{f, g} = 〈grad f, H(grad g)〉, (12)

where H = {Pi,j} and 〈·, ·〉 is a standard scalar product. The
matrix H is called Hamiltonian operator or Poisson tensor.

The Poisson bracket is called degenerate if DetH = 0.

The Hamiltonian dynamical system are defined by the
formula

dyi
dt

= {H, yi}, i = 1, . . . ,m,

where H is a function of Hamilton.



Example. Consider a symplectic manifold with coordinates
qi and pi, i = 1, . . . n. The standard (non-degenerate) Poisson
constant brackets are given by formulas

{pi, pj} = {qi, qj} = 0, {pi, qj} = δi,j , (13)

where δ is the Kronecker symbol. Written in the variables

y1 = p1, . . . , yn = pn, yn+1 = q1, . . . , y2n = qn

the Poisson tensor H for the brackets (13) has the following
block structure

H =

(
0 1
−1 0

)
.



In the case of linear Poisson brackets we have

Pij =
∑
k

bkijyk, i, j, k = 1, . . . ,m.

It is well known that the formula (11) defines a Poisson bracket
iff bkij are structural constants of some Lie algebra. Very often,
the name of this Lie algebra is assigned to the corresponding
Poisson bracket.

Hamiltonian structure for equation (2)

Suppose that a Lie algebra g is represented as

g = g+ ⊕ g−;

then the formula

[x, y]R = 1/2 ([Rx, y] + [x,Ry]) (14)

defines a second structure of Lie algebra on the vector space g.



Here R = π+ − π− is the difference of projectors on g+ and g−,
respectively. If x, y ∈ g are represented as x = x+ + x− and
y = y+ + y− then the new Lie structure corresponds to the
direct sum of ideals:

[x, y]R = [x+, y+]− [x−, y−].

The operator R is the simplest example of the so called
R-matrix. In general, the R-matrix is an linear operator
R : g 7→ g that satisfy the modified Yang–Baxter equation

R
(

[y,R(x)]− [x,R(y)]
)

+ [R(x), R(y)] + [x, y] = 0,

where x, y ∈ g.

Thus, we have two linear Poisson brackets {·, ·} and {·, ·}R
on the symmetric algebra S(g), corresponding the commutators
[·, ·] and [·, ·]R.



Lemma. Suppose a matrix U satisfies equation

dU

dt
= [A, U ], (15)

then
i) if U1 and U2 satisfy (30), then the product Ū = U1U2 also

satisfies (30);
ii) Ū = Um satisfies (30) for all m ∈ N;
iii) trUn is an integral of motion for (30);

Proof. Item i). We have

Ūt = (U1)tU2 + U1(U2)t = [A, U1]U2 + U1[A, U2] = A Ū − Ū A.

Item (ii) follows from (i). Item iii): Applying the trace
functional to both sides of the identity (Un)t = [A, Un], we
obtain (trUn)t = 0.



It follows from the lemma that trUn are first integrals of
(2). The same fact follows also from formula (3). Moreover, (3)
implies that any invariant of action of G+ on g is a first integral
of (2). In spite of (3) we have

U(t) = B(t)U0B
−1(t), (16)

and therefore the invariants of G−-action are also integrals of
motions.

In particular, consider the decomposition

gln = n+ ⊕ b− (17)

where the nilpotent subalgebra n+ spanes by eij for i < j, and
the Borel subalgebra b− is generated by eij for i ≥ j. A problem
that arises here is to describe the invariants of action

U → BUB−1,

where U ∈ gln and B is a low-triangular nondegenerate matrix.



Example. Let n = 4. The function

I = u22 + u33 −
u12u24 + u13u34

u14

is an invariant.

Lemma. Equation (2) is Hamiltonian with the Poisson
bracket {·, ·}R, where R = π+ − π−, and Hamiltonian
H = traceU2.

Remark. Generally speaking the invariants of action G+

and G− do not commute with each other.



Reductions
From formula (3) it follows that if the initial data U0 for

the system (2) belongs to some G+-moduleM, then X(t) ∈M
for any t. This specialization of equation (2) can be written as

Mt = [π+(M), M ], M ∈M. (18)

Example. In the case of the decomposition gln = so⊕ b−
we can take the vector space of symmetric matrices forM. The
corresponding system (18) is called full symmetric Toda lattice.

Introducing the product

M1 ◦M2 = [π+(M1), M2], Mi ∈M, (19)

we endowM with a structure of (generally speaking,
non-commutative and non-associative) algebra. The system (18)
is calledM-reduction, and the operation (19) is called
M-product.

Some classes of modulesM correspond to interesting
non-associative algebras defined by the formula (19).



We will use the following notation:

As(X,Y, Z) = (X ◦ Y ) ◦ Z −X ◦ (Y ◦ Z), (20)

[X,Y, Z] = As(X,Y, Z)−As(Y,X,Z). (21)

Definition. Algebras defined by the identity [X,Y, Z] = 0
are called left-symmetric

Definition. An algebra with identities

[X,Y, Z] + [Y, Z,X] + [Z,X, Y ] = 0, (22)

and

V ◦ [X,Y, Z] = [V ◦X,Y, Z] + [X,V ◦ Y,Z] + [X,Y, V ◦Z] (23)

is called a G-algebra.
Remark. The identity (22) means that the operation

X ◦ Y − Y ◦X is a Lie bracket.



Reductions in the case of Z2-graded Lie algebras

Let
g = g0 ⊕ g1 (24)

be a Z2-graded Lie algebra, i.e.

[g0, g0] ⊂ g0, [g0, g1] ⊂ g1, [g1, g1] ⊂ g0.

Suppose that we have a decomposition (1), where g+ = g0.
Consider g1-reductions.

It is clear that

g− = {m−R(m) |m ∈ g1}, (25)

where R = π+ is the projection onto g+ = g0 parallel to g−.



The vector space (25) is a Lie subalgebra in g iff the
operator R : g1 → g0 satisfies the modified Yang–Baxter
equation

R
(

[R(x), y]− [R(y), x]
)
− [R(x), R(y)]− [x, y] = 0,

where x, y ∈ g1.
Remark. It is important to note that in our case R is an

operator defined on g1 and acting from g1 in g0, while as usual
R is assumed to be an operator on g.

Proposition 1. If [g1, g1] = {0}, then g1 is a
left-symmetric algebra with respect to product (19).

Without the assumption [g1, g1] = {0} we arrive at
G-algebras:

Proposition 2.
i) The vector space g1 is a G-algebra with respect to the

operation (19).
ii) Any G-algebra can be obtained from an appropriate

Z2-graded Lie algebra using this construction.



Decomposition of loop algebas
Let g be a Lie algebra with a basis ei, i = 1, . . . , n. The Lie

algebra g((λ)) of formal series of the form
∞∑

i=−n
giλ

i | gi ∈ g, n ∈ Z (26)

is called the (extended) loop algebra over g.

Consider decompositions

g((λ)) = g[[λ]]⊕ U (27)

of the loop algebra into a direct sum of vector subspaces, the
first of which is the Lie subalgebra g[[λ]] of all Taylor series, and
the second one is a Lie subalgebra. The Lie algebra U is called
factoring, or complementary.

The simplest factoring subalgebra consists of polynomials
in 1

λ with a zero free term:

Ust =
{ n∑
i=1

giλ
−i | gi ∈ g, n ∈ N

}
. (28)



Example 1. Let g = so3 with the basis

e1 =

 0 1 0
−1 0 0
0 0 0

 , e2 =

 0 0 1
0 0 0
−1 0 0

 ,

e3 =

 0 0 0
0 0 1
0 −1 0

 .

Then the elements

E1,1 =

√
1− pλ2
λ

e1, E2,1 =

√
1− qλ2
λ

e2,

E3,1 =

√
1− rλ2
λ

e3.

generate a factoring subalgebra for any parameters p, q, r.
The expressions Xi(λ) = |Ei| are functions on the elliptic

curve
X2

1 + p = X2
2 + q = X2

3 + r.



For any i, k > 0 there exists a unique element Eik ∈ U such
that

Eik =
ei
λk

+O(k − 1). (29)

Let
L =

∑
i,k

xik(t)Eik, A =
∑
i,j

aij(t)Eij .

Consider the relation (so called Lax equation)

dL

dt
− [A, L] = 0, (30)

where k 6 p, j 6 q.
Lemma. This relation is equivalent to a finite system of

ODEs for the coefficients xik, aij .
Proof. The l.h.s. is a series with finite number of terms of

the form Piλ
−i, i > 0. Suppose that all Pi equals zero. Then the

l.h.s. is identically zero. Indeed, the dL
dt − [A, L] ∈ U and it is a

Teylor series.



PDE case
In the PDE case the operator L in the Lax pair is not a

matrix but an ordinary differential operator.

Any factoring subalgebra U in so3 generates a Lax pair of
the form

L =
d

dx
+ U, U =

3∑
i=1

siEi, s21 + s22 + s23 = 1, (31)

A =
∑
i

si [Ej , Ek] +
∑
i

tiEi, (32)

leading to a nonlinear integrable PDE of the Landau–Lifschitz
type. For this special case equation (30) can be written as

Ut −Ax + [U, A] = 0. (33)

We can find the coefficients ti and the corresponding
nonlinear system of the form

st = ~F (s, sx, sxx), where s = (s1, s2, s3), s2 = 1,

using a direct calculation.



Namely, comparing the coefficients of λ−2 in the relation (33),
we express ti in terms of s, sx. And then, equating the
coefficients of λ−1, we get a system of evolution equations for s.

Example 1 (continuation). Equating to zero the
coefficient of λ−2 in (33), we get sx = s× t, where
t = (t1, t2, t3). Since s2 = 1, we find that t = sx × s + µ s.

Comparing the coefficients of λ−1, we arrive at the equation
st = tx − s×Vs, where V = diag (p, q, r). Substituting the
expression for t, we obtain

st = sxx × s + µx s + µ sx − s×Vs.

Since the scalar product (s, st) has to be zero, we find that
µ = const. The resulting equation coincides (up to the
involution t→ −t, a trivial additional term µ sx and a change of
notation) with the Landau–Lifschitz equation

ut = u× uxx + R (u)× u, |u| = 1.

Here × stands for the cross product.


