Вороново —
$$2023$$
.

Простые числа в арифметических прогрессиях. Семинар 5.

Задача 1.

Пусть p — простое число. Предположим, что гипотеза Римана верна для L-функции квадратичного характера $\chi_p(n)=\left(\frac{n}{p}\right)$. Пусть n_p и ℓ_p — наименьший квадратичный невычет и наименьший простой квадратичный вычет mod p соответственно. Рассмотрев сумму

$$\sum_{n} \Lambda(n) \chi_p(n) e^{-n/x}$$

для $x=n_p$ и ℓ_p , докажите, что $\max(n_p,\ell_p)=O(\ln^2 p)$.

Пусть $p\equiv 3\pmod 4$ — простое число, $K=\mathbb{Q}(\sqrt{-p}),\mathcal{O}_K$ — соответствующее кольцо целых. Для каких q идеал $q\mathcal{O}_K$ раскладывается в произведение двух простых?

Задача 3.

В предположениях предыдущей задачи докажите, что если $\mathbb{Z}\left[\frac{1+\sqrt{-p}}{2}\right]$ является кольцом главных идеалов, то $\ell_p=\frac{p+1}{4}$.

Задача 4.

Напомним, что $au_{\chi_p}(n) = \sum_{d|n} \chi_p(d)$, а ℓ_p — наименьший простой квадратич-

ный вычет $\mod p$. Кроме того, мы уже знаем, что если $H(t) = \sum\limits_{n=1}^{+\infty} \tau_{\chi_p}(n) t^n,$ 1/2 < t < 1, то

$$H(t) = \frac{L(1,\chi)}{1-t} + O\left(\sqrt{p}\ln p \ln \frac{1}{1-t}\right)$$

- а) Докажите, что при $n < \ell_p$ функция $au_{\chi_p}(n)$ совпадает с индикаторной функцией квадратов.
- б) Выбрав $t = e^{-\ell_p/\ln \ell_p}$, докажите, что $\ell_p \ll p^{1/2 + o(1)}$.
- в) Заключите, что $\mathbb{Z}\left[\frac{1+\sqrt{-p}}{2}\right]$ является кольцом главных идеалов лишь для конечного числа простых p.

Задача 5.

- а) Разложите индикаторную функцию отрезка [0,1/2] в ряд Фурье на отрезке [0,1].
- б) Пусть p простое число, I подотрезок в [0,p], N(I) и R(I) числа квадратичных невычетов и квадратичных вычетов на отрезке I. Докажите, что $R([0,p/2]) \ge N([0,p/2])$.

Задача 6.

Когда сходится ряд

$$f(z) = \sum_{n \ge 1} e^{-\sqrt[3]{n}z}?$$

Докажите, что f(z) имеет мероморфное продолжение во всё \mathbb{C} . $Задача~7^*$.

Зададим действие группы $SL_2(\mathbb{R})$ на верхней полуплоскости формулой

$$\gamma \tau = \frac{a\tau + b}{c\tau + d},$$

где $\gamma=egin{pmatrix} a&b\\c&d \end{pmatrix}$. Докажите, что для любого τ найдется матрица γ из $SL_2(\mathbb{Z})$ такая, что $|\mathrm{Re}(\gamma\tau)|\leq \frac{1}{2}$ и $|\gamma\tau|\geq 1$. $3a\partial a ua~8^*$.

Сопоставим всякой квадратичной форме $Q(x,y) = Ax^2 + Bxy + Cy^2$ с целыми коэффициентами и отрицательным дискриминантом единственный корень τ_Q уравнения $Q(\tau,1)=0$, лежащий в верхней полуплоскости.

- а) Пусть $\gamma \in SL_2(\mathbb{Z})$, определим $\gamma Q(x,y)$ формулой Q(ax+cy,bx+dy). Докажите, что дискриминант формы не меняется при таком преобразовании. Что происходит с τ_Q ?
- б) Докажите, что всякая положительно определенная целочисленная форма с дискриминантом -4 приводится к виду $x^2 + y^2$ матрицей из $SL_2(\mathbb{Z})$.
- в) Пусть $p \equiv 1 \pmod 4$. Постройте квадратичную форму дискриминанта -4, представляющую p, и выведите из этого Рождественскую Теорему Ферма: всякое простое число вида 4k+1 есть сумма двух квадратов.