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Two-dimensional sigma-models

Harmonic maps of two-dimensional Riemann surface Σ to a
Riemann manifold M are of interest both in physics and
mathematics. They are critical points of the Dirichlet functional,
the sigma model action

S(X ) =

∫
Σ

√
hhabgij(X )∂aX i∂bX j dxdy =

∫
Σ

gij(X )∂X i ∂̄X j .

(1)
Here the map Φ : Σ→ M is represented, locally, by the
pullbacks X i(x , y) = Φ∗x i , i = 1, . . . , dimM, of the coordinate
functions (x i) on M to Σ, with x , y local real coordinates on Σ
and (z, z̄) denote the complex coordinates on Σ, in the complex
structure determined by the conformal class of the metric hab
via habdyadyb ∝ dzdz̄. Finally, gij(X )dX idX j is a Riemann
metric on the target manifold M.



O(N) sigma model
The target manifold is the unit sphere, M = SN−1, with induced
metric.

Equations of motion

(−∂z∂z̄ + u(z, z̄)) qi(z, z̄) = 0 , i = 1, . . . ,N (2)

The potential u is the Lagrange multiplier enforcing the
constraint that the vector q ∈ RN with the coordinates qi lies on
the unit square

(q,q) = 1 (3)

From (2) and (3) it is easy to get:

u = − (∂zq, ∂z̄q) (4)

Most of our results are evenly applicable to the case of arbitrary
quadric

(q,q) :=
∑

ij

ηijqi qj
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Spectral curves from zero-curvature representation

Our main interest is in the double-periodic two-dimensional
sigma model, i.e. we take Σ to be a two-dimensional torus
T 2 = S1 × S1. Its conformal structure is parameterized by the
complex number τ , with = τ > 0.

The harmonic maps of the two-torus T 2 to S3 were constructed
by Hitchin via the zero-curvature representation for the principal
chiral SU(2) model. The latter is the compatibility condition for
the system of two linear equations(
∂z −

U(z, z̄)

λ+ 1

)
Ψ(z, z̄, λ) = 0 ,

(
∂z̄ +

V (z, z̄)

λ− 1

)
Ψ(z, z̄, λ) = 0

(5)
with U = X−1∂zX and V = X−1∂z̄X .
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The key result of Hitchin was a proof that the branch points of
the two-sheet cover of the complex λ plane defined by the
characteristic equations

Rα(µa, λ) := det (µα · I− Bα(λ)) = 0 (6)

for the monodromy matrices

Bα(λ) := Ψ(z + ωα, z̄ + ω̄α, λ)Ψ−1(z, z̄, λ), α = 1,2 (7)

coincide and there number is finite.

The hyperelliptic curve defined by these branch points is a
normalization of the analytic spectral curves (6).



The serious drawback of the inverse reconstruction of the
harmonic map from the hyperelliptic curve and a point of its
Jaconian is the periodicity constraint. In general the
reconstruction gives quasi-periodic maps of the universal cover
of Σ. The equations that single out periodic maps are given in
terms of periods of certain abelian differentials of the second
kind on the hyperelliptic curves. The equations are
transcendental and hard to control. Hitchin proved that there
are solutions to these equations for hyperelliptic curves of
genera 1,2,3, only.



Harmonic maps to S2

For further comparison with the results of that work, one more
observation made by Hitchin should be emphasized:

there is only one class of harmonic maps which can not be
reconstructed by algebraic-geometrical data, and those are the
ones for which the Floquet multipliers µα are constants.

These maps are known explicitly (Polyakov, Belavin)

x + ix2 =
2w

1 + |w |2
, x3 =

1− |w |2

1 + |w |2

w(z) =

∏`
i=1 σ(z − ai)∏`
i=1 σ(z − bi)

,
∑

i

ai =
∑

i

bi
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The Novikov-Veselov hierarchy
The NV hierarchy was introduced as the compatibility condition
of the system of linear equations

Hψ := (−∂z∂z̄ + u)ψ = 0, (8)

(∂tn − Ln)ψ = 0 , (9)

where Ln is a differential operator of the form

Ln = ∂2n+1
z +

2n−1∑
i=1

wi,n(z, z̄)∂ i
z (10)

The compatibility condition of linear equations (8,9) is the,
so-called, Manakov’s triple equation

∂tnH = [Ln,H] + BnH , (11)

where Bn is a differential operator in the variable z.



The phase space
The NV hierarchy can be defined as a system of commuting
flows on a space P of self-dual wave (formal Baker-Akhiezer)
solutions of the Schrödinger equation (8), i.e. the formal
solutions of the form

ψ(z, z̄, k) = ekz

(
1 +

∞∑
s=1

ξs(z, z̄)k−s

)
(12)

such that equations

Res∞ (ψ(z, z̄,−k)∂s
zψ(z, z̄, k))

dk
k

= −δs,0, s = 0,1, . . .
(13)

holds.

P = {u(z, z̄), χ1(z), χ3(z), . . .}

χs(z) := ξs(z,0)
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The flows
Given the formal BA series ψ(z, z̄, k) define:
(i) the wave operator

Φ = ∂z +
∞∑

s=1

ξs(z, z̄)∂−s
z

(ii) the pseudo-differential operator

L = Φ(∂z)Φ−1, ⇒ Lψ = kψ

(iii) the differential operator

Ln
+ =

n∑
i=1

F (−i)
n ∂ i

z

such that

Ln
− = Ln − Ln

+ = F (0)
n + F (1)

n ∂−1
z + O(∂−2

z ).

F (1)
n = Res∂zLn
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The flows II

Now we are ready to define NV hierarchy explicitly.

Theorem

The equations
∂tnu = ∂z̄F (1)

2n+1 , (14)

∂tnψ = L2n+1
− ψ (15)

define a family of commuting flows on the space P of self-dual
formal BA solutions of the Schrödinger operators.



Theorem
Let q(z, z̄) be a solution of the O(N) sigma model. Then there
exists a unique up to multiplication by (z, z̄)-independent factor,
i.e.

ψ 7−→ ψρ(k), ρ(k) = exp

( ∞∑
s=1

ρsk−2s+1

)
(16)

self-dual formal BA solution ψ of the Schrödinger equation with
the potential u given by (4) such that the constraint (3) is
invariant under the commuting flows

∂tnq = L2n+1
+ q (17)

Essentially, the proof of the theorem is the proof of the equality

(L2n+1
+ q,q) = 0
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O(N) sigma model on a two-torus

Lemma

Let u(z, z̄) be a double periodic function. Then there is a
unique up to the transformation (16) self-dual BA formal
solution of the Schrödinger equation (2) of the form

ψ(z, z̄, k) = ekz+`(k)z̄

(
1 +

∞∑
s=1

ζs(z, z̄)k−s

)
(18)

with double periodic coefficients ζs, i.e.

ζs ( z + ωα , z̄ + ω̄α ) = ζs(z, z̄) , α = x , y , (19)

and where `(k) is a formal series,

`(k) =
∞∑

s=1

`sk−s (20)



Theorem
The equations

∂tnu = ∂z̄F (1)
2n+1 (21)

with F (1)
2n+1 = Res∂ L2n+1

+ , where L is defined by the formal BA
solution defined above are commuting flows on the space of
double periodic functions.

Moreover if u = −(∂zq, ∂z̄q) for some solution of O(N)-sigma
model then the constraint (q,q) = 1 are preserved by the flows

∂tnq = L2n+1
+ q (22)



The algebraic spectral curve

Let q(z, z̄, t), t = (t1, t2, . . .) be a an orbit of q(z, z̄,0) under the
flows of the NV hierarchy. Taking the tn derivative of (2) and
using the equation

∂tnu = −(∂z(L2n+1
+ q), ∂z̄q)− (∂zq, ∂z̄(L2n+1

+ q)) (23)

we get the equation

D
(
L2n+1

+ q
)

= 0

where

D = ∂z∂z̄ +
(
q ⊗ (∂z̄q)t) ∂z +

(
q ⊗ (∂zq)t) ∂z̄ + (∂zq, ∂z̄q)

is an elliptic operator on Σ.



An elliptic equation on Σ has only finite number of solutions.
Hence for all but a finite number of integers n there are
constants cn,m such that for the operator

L̃n := L2n+1
+ +

n−1∑
i=0

cn,mL2m+1
+ (24)

the equation
L̃nq = 0 (25)

holds.

Definition
A Schrödinger operator is called algebraic-geometric
(finite-gap) if it is stationary for all but a finite number of the NV
hierarchy flows.



Lemma

The operators L̃n defined above commute with each other

[L̃n, L̃m] = 0 (26)

Lemma (Burchnall-Chundy)
Let Ln and Lm be commuting ordinary linear differential
operators of orders n and m, respectively. Then there exists a
polynomial R in two variables such that the equation

R(Ln,Lm) = 0 (27)

holds.

The affine curve defined by equation (27) is compactified by
one smooth point P+.
The corresponding algebraic curve Γ is called the spectral
curve.
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For a generic pair of commuting operators of co-prime orders
the spectral curve is smooth and the common eigenfunction ψ
of the commuting operators is the Baker-Akhiezer function:

10. as a function of p ∈ Γ it is meromorphic on Γ \ P+ with
z-independent divisor D of poles of degree equals the genus of
Γ;
20. in the neighborhood of P+ it has the form (12).

A priory in the problem under consideration there are two
spectral curves. One, which we have just discussed, and the
second one with marked smooth point P− which corresponds to
commuting operators in the variable z̄. In fact, these spectral
curves coincide.
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Theorem
The spectral curve Γ of an algebraically integrable operator H is
a curve with involution. In the generic case when Γ is smooth:
the points P± are the only fixed points of σ; the common
eigenfunction ψ of the operators Ln, L̄m satisfying the equation
Hψ = 0 in the neighborhoods of P± it has the form

ψ (z, z̄,p) = ek+z

(
1 +

∞∑
n=1

ξ+
n (z, z̄)k−n

+

)
, p → P+,

ψ (z, z̄,p) = ek−z̄

(
1 +

∞∑
n=1

ξ−n (z, z̄)k−n
−

)
, p → P−

and outside marked points P± it is meromorphic with
(z, z̄)-independent divisor of poles D satisfying the constraint

D + Dσ = K + P+ + P− (28)

where K is the canonical class, i.e. the equivalence class of the
zero divisor of a holomorphic differential on Γ.



Periodicity constraint
The potential u(z, z̄) is periodic if and only if there are functions
w±α on Γ± such that equations

ψ(z + ωα, z̄ + ω̄α, p) = wα(p)ψ±(z, z̄,p) (29)

hold.

The differential dpα = d ln wα is a meromorphic differential on Γ
with the poles at P± of the form

dpx = dk+(1 + O(k−2
+ )), dp+

y = τdk+(1 + O(k−2
+ ))

dpx = dk−(1 + O(k−2
− )), dp−y = τ̄dk−(1 + O(k−2

− )) ,

The definition of dpα implies∮
c

dpα ∈ 2πiZ ∀ c± ∈ H1 (Γ,Z) (30)
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w∞-harmonic maps
Note that if the equations

(∂ j
zq, ∂ j

zq) = 0, 0 < j < m (31)

hold then using the Shrödinger equation it is easy to see that
∂z̄(∂m

z q, ∂m
z q) = 0. The model is invariant under a conformal

change of variables z 7→ f (z), z̄ 7→ f̄ (z̄). Hence if
(∂m

z q, ∂m
z q) 6= 0, then without loss of generality we may assume

that
(∂m

z q, ∂m
z q) = (−1)m+1 (32)

We will call such solutions wm-harmonic. Notice, that for m > 1
they are conformal.

Recall, conformal harmonic maps are maps for which the
pull-back X ∗(g) of the target space metric g is conformally
equivalent to the worldsheet metric h on Σ. They are of special
interest in geometry since their images are immersed minimal
surfaces.
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Reducible spectral curves
Let Γ± be a smooth genus g± algebraic curve with the
holomorphic involution

σ : Γ± 7−→ Γ±, (33)

with 2(1 + n) fixed points

σ(P±) = P±, σ(pi
±) = pi

± (34)

Let us fix the σ-odd local parameters k−1
± in the neighborhoods

of the marked points P±,

k±(σ(p)) = −k±(p) (35)

The projection
π : Γ± 7−→ Γ0

± = Γ±/σ (36)

represents Γ± as a two-sheet covering of the quotient-curve Γ0
±

with 2(n + 1) branch points P±, pi
±, the involution σ permuting

the sheets.



The divisors

Let dΩ±(p) be a third kind meromorphic differential on Γ0
± with

the divisor of poles at the branching locus (Γ±)σ with residues
∓1 at the marked points P±. The differential dΩ± has g± + n
zeros that we denote by γ0,±

s ,

dΩ±(γ0,±
s ) = 0. (37)

For each zero γ0,±
s we choose one of its preimages on Γ±, i.e.

a point γ±s on Γ± such that

π
(
γ±s
)

= γ0,±
s , s = 1, . . . ,g± + n. (38)

(there are 2g±+n such choices). Below D± = γ±1 + . . .+ γ±g±+n
will be called the admissible divisor.



The BA function

For a generic set of data
(
Γ±, σ,P±, k±,pi

±, γ
±
s
)

and a matrix
G ∈ O(2n + 1,C), there is a unique pair of functions ψ±(z, z̄,p)
on Γ± such that:
10. Outside P± the function ψ± is meromorphic with the pole
divisor D±;
20. In the neighborhoods of P± the function ψ± has the form

ψ (z, z̄,p) = ek+z

(
1 +

∞∑
n=1

ξ+
n (z, z̄)k−n

+

)
, p → P+,

ψ (z, z̄,p) = ek−z̄

(
1 +

∞∑
n=1

ξ−n (z, z̄)k−n
−

)
, p → P−



30. The gluing equations

y+(z, z̄) = G y−(z, z̄) (39)

where y± are vectors with the coordinates

y i
± = r i

±ψ±(z, z̄,pi
±), i = 1, . . . ,2n + 1, (40)

(r i
±)2 = ∓ resp±i dΩ± (41)

hold.



The pair of functions ψ := (ψ+, ψ−) is the Baker-Akhiezer
function on Γ := (Γ+

⊔
Γ−).

Theorem
The Baker-Akhiezer function ψ(z, z̄,p) on Γ satisfies the
equation

( ∂z∂z̄ − u(z, z̄) )ψ(z, z̄,p) = 0,

with the potential u = ∂z̄ξ
+
1 = ∂zξ

−
1

Moreover, the 2n + 1-dimensional vector

q = Hy+, H ∈ SO(2n + 1,C)

satisfies the equations:

(q,q) = 1 , (∂ i
zq,q) = 0 , i > 0



The elliptic CM system

Theorem
The Eqs. (30) are satisfied iff Γ± is the normalization of the
spectral curve CN± of N±-particle elliptic Calogero-Moser (eCM)
system.

Recall that the N-particle eCM is the Hamiltonian system on
XN = T ∗(EN\diag) = {(pi , zi)

N
i=1 |pi ∈ C, zi ∈ E , zi 6= zj , i 6= j },

E = C/Zω1 ⊕ Zω2, which is governed by the Hamiltonian

H2 =
1
2

N∑
i=1

p2
i + ν2

∑
i<j

℘(zi − zj ;ω1, ω2) (42)



This is an algebraic integrable system with the Lax operator

L(α) =

∥∥∥∥piδij + ν
σ(α + zi − zj)

σ(zi − zj)σ(α)
(1− δij)

∥∥∥∥N

i,j=1
(43)

whose flows linearized on the Jacobian of the spectral curve
CN ⊂ M = C× (E\{α = 0})

R(k , α) := Det (k − L(α)) = kN +
N∑

j=1

kN−jcj(α) = 0 (44)



Explicitly
R(k , α) = f (k + ζ(α), α),

where

f (p, α) =
1

σ(α)
σ

(
α +

∂

∂p

)
H(p) =

1
σ(α)

N∑
n=0

1
n!
∂ n
ασ(α)

∂nH
∂pn .

(45)
and H is the monic degree N polynomial

H(p) = pN +
N−1∑
i=0

IipN−i (46)

whose coefficients I0, . . . , IN−1 ∈ C are the integrals of motion
of the the N-particle elliptic Calogero-Moser (eCM) system.
Their values parametrize the eCM spectral curves.



Turning points of the eCM system

Theorem
A spectral curve of the eCM system admits a holomorphic
involution σ under which the marked point P is fixed, i.e.
σ(P) = P, if and only if it corresponds to a "turning point" of the
CM system (0, zi)

N
i=1.

In terms of Ii the corresponding curves are those with Iodd = 0.



Example. O(3) model

Let Γ be the spectral curve corresponding to a turning point of
N = 2`-particle eCM system. For generic values of the
parameters Ieven ( and Iodd = 0) the curve Γ is smooth of genus
g = 2` and has only two fixed points of the involution. Our
construction of the solutions for the O(3) sigma model requires
curves with involution having at least 4 fixed points.
The equations

∂αF (0,0) = 0, ∂pF (0,0) = 0 (47)

cut out an (`− 2) dimensional linear subspace in the space of
parameters Ieven. The normalization of the singular spectral
curve has genus (2`− 3) and has 4 fixed points of involution.
The corresponding quotient-curve is of genus (`− 2).



Introduce the function

φ =
θ(A(p)− A(p3)− Z ) θ(A(γ1) + Z ) θ(A(γ2) + Z )

θ(A(p3) + Z ) θ(A(p)− A(γ1)− Z ) θ(A(p)− A(γ2)− Z )
×

× θ(A(p) + A(p3)− A(γ1)− A(γ2) + zU − Z )

θ(A(p3)− A(γ1)− A(γ2) + zU − Z )
×

× exp (z Ω2(p))
(48)

Then

r1φ(z,p1)+iφ(z,p2) = w(z) = C
∏`

i=1 σ(z − ai)∏`
i=1 σ(z − bi)

,
∑

i

(ai−bi) = 0


