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Hurwitz spaces

Hurwitz spaces are spaces of meromorphic functions on complex algebraic
curves, {f : C → CP1}. To specify a Hurwitz space, one should specify

the genus g of the curves;

the degree d of the functions;

the number of points of degenerate ramification in the target CP1

(all the other ramification points are presumed to be nondegenerate);

the ramification profile (a partition of d) over each point of
degenerate ramification.

Two functions f1 : C1 → CP1 and f2 : C2 → CP1 are considered as being
the same if there is a biholomorphism h : C1 → C2 such that f1 = f2 ◦ h.

Remark: If a Hurwitz space is nonempty (the above data is consistent),
then the tuple of points of nondegenerate ramification in CP1 can serve as
a set of local coordinates in it.
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Why Hurwitz spaces are worth being studied?

Geometry of Hurwitz spaces is closely related to that of moduli spaces
of genus g curves.

Geometry of Hurwitz spaces is in a sense simpler, because the
mapping taking a function to the tuple of its points of nondegenerate
ramification extends to a ramified covering of a projective space.

Geometry of Hurwitz spaces can be used to compute the
Gromov–Witten invariants of the projective line CP1 (Hurwitz
numbers).

This can be used as a model example for computing Gromov–Witten
invariants for arbitrary target varieties.
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Completing Hurwitz spaces

Step 1. Add functions whose other ramification points are not necessarily
nondegenerate.
Step 2. Add functions on singular (nodal) curves.
The second step can be done in several different ways:

Harris–Mumford (1982): compactification by admissible coverings;

Kontsevich (1995): compactification by stable maps;

Natanzon–Turaev (1999): compactification by decorated branch
coverings;

Cavalieri–Marcus (2014): compactification by rubber stable maps (for
double Hurwitz spaces), . . .

Kontsevich’s approach, in contrast to the other ones, leads to a smooth
orbifold, and we use it to compactify Hurwitz spaces and study their
geometry.
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Simple Hurwitz spaces

A Hurwitz space is simple if it consists of functions with only one point of
degenerate ramification, which we assume to be infinity. Its preimages are
poles, and the ramification profile consists of the orders of the poles. The
Hurwitz space Hg ;κ of degree K meromorphic functions on genus g curves
with poles of orders κ = (k1, . . . , kn) ` K is a connected orbifold of
dimension n + K + 2g − 2. Denote by Hg ;κ the irreducible component in
the space of stable maps containing Hg ;κ.

The Hurwitz space Hg ;κ is fibered over the moduli space Mg ;n of stable
genus g curves with n = `(κ) marked points (which are the poles of the
functions).
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Simple Hurwitz spaces

A lot is known about simple Hurwitz spaces and corresponding simple
Hurwitz numbers:

There are explicit formulas for simple Hurwitz numbers in a number
of important situations, including Hurwitz’s formula for genus 0;

the generating function for simple Hurwitz numbers is a 1-parameter
family of τ -functions for the KP hierarchy (Okoun’kov, 2000);

the ELSV formula (2000) for connected simple Hurwitz numbers

hg ;κ ∼
∫
Mg ;n

c(Λ∨)∏n
i=1(1− kiψi )

=

∫
Mg ;n

1− λ1 + λ2 − · · · ± λg∏n
i=1(1− kiψi )

;

as a consequence, hg ;κ is a polynomial in the parts of κ.

the generating function for linear Hodge integrals∫
Mg ;n

λiψ
k1
1 . . . ψkn

n

is a 1-parameter family of solutions to the KP (Kazarian, 2009).
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Double Hurwitz spaces

Double Hurwitz spaces are Hurwitz spaces of meromorphic functions with
a prescribed ramification over two points (‘infinity’ and ‘zero’), in contrast
to one point (‘infinity’) for simple Hurwitz spaces. To specify a double
Hurwitz space, one must pick two partitions of the same number K . The
corresponding numbers are double Hurwitz numbers.

Much less is known about double Hurwitz numbers:

There are explicit formulas for very few families;

The generating function for double Hurwitz numbers is a solution to
Toda lattice hierarchy (Okoun’kov, 2000);

There is no analogue of the ELSV formula that expresses connected
double Hurwitz numbers in terms of intersection indices on moduli
spaces of curves;

However, they are known to be piecewise polynomial in the parts of
the two partitions, which suggests an existence of such a formula;
several formulas of this kind have been conjectured, but the integral
in all of them is over certain conjectural spaces.
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Double ramification cycles

Double Hurwitz spaces, when projected to Mg ;n, form double ramification
cycles.

Definition of double ramification cycles in Mg ;n is more subtle and
requires considering virtual cohomology classes. There are expressions of
these cycles in terms of ψ- and κ-classes (conjectured by Pixton and
proved by Janda, Pandharipande, Pixton and Zvonkine in 2017).
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Strategy for studying double Hurwitz numbers

It is more convenient to consider simple Hurwitz spaces with additional
marked points on the source curves (that eventually become zeroes). Let
H be the simple Hurwitz space of meromorphic functions on genus g
curves with ramification profile κ ` K over infinity, H = Hg ;r |κ. The
double Hurwitz space X(λ) is a stratum in Hg ;r |κ, the closure of the locus
of functions having zeroes of orders l1, . . . , lr , li ≥ 0 at the additional
marked points. The codimension of the stratum is |λ| = l1 + · · ·+ lr .

In order to isolate X(λ), consider the commutative diagram

X
F //

P !!

Y

Q}}
PH

(1)

X — the universal source curve over PH with poles removed;
Y — the universal target curve over PH with infinity removed;
F — the universal mapping whose restriction to a fiber of P over a point

f ∈ H coincides with f .
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Thom’s universality principle

For a triple like

X
F //

P !!

Y

Q}}
PH

(2)

a relative version of Thom’s universality principle for global singularities
can be applied. It asserts that
for a generic mapping F , the cohomology class Poincaré dual to the
subvariety in X consisting of points where the restriction of F to a fiber
of P acquires a singularity of a given type admits a universal expression in
terms of the relative Chern class

c(F ) =
c(F ∗TY )

c(TX )
= 1 + c1(F ) + c2(F ) + . . . .
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Singularity types

All the possible singularity types in generic families are known and are:

If a fiber of F is smooth, then the only possible singularity types are
Ak−1 : z 7→ zk . The corresponding versal deformations are spaces of
polynomials.

For a node of a fiber, the possible singularity types are Ik,l , which are
Ak−1 when restricted to one branch and Al−1 when restricted to the
other. The corresponding versal deformations are spaces of
trigonometric polynomials (rational functions with two poles of given
order).

Also unavoidable are nonisolated singularities, where f takes an
irreducible component of a curve to a single point. The corresponding
versal deformations are simple Hurwitz spaces.
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Kazarian’s principle

Kazarian’s principle extends Thom’s principle to the case of
multisingularities. A multisingularity of a given tuple of types, is a point
in Y whose preimages under F are singularities of these types. A double
Hurwitz space X(λ) is the projection under Q of the locus
Σl1−1,l2−1,...,lr−1[Y ] ⊂ Y of multisingularities (Al1−1,Al2−1, . . . ,Alr−1).

For the case of A-type singularities only, Kazarian’s principle asserts that
there are universal polynomials Ri1i2...im in the relative Chern classes
c1(F ), c2(F ), . . . such that the generating function∑

[Σl1−1,l2−1,...,lr−1[Y ]]ti1tl2 . . .

for the cohomology classes dual to the loci of multisingularities in Y is the
exponent of the generating function∑

i1,...,im

F∗(Ri1,...,im)ti1ti2 . . . tim .
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Generating function for Ak multisingularities

In the case when all the fibers are smooth, we have

c(F ) =
c(F ∗TY )

c(TX )
=

1− ψ
1 + ξ

.

Here ψ and ξ are, respectively, the first Chern class of the relative
cotangent line bundle to the source and the relative tangent line bundle to
the target curve. All Chern classes of F can be expressed from just two
classes, ψ and ξ.
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Generating function for Ak multisingularities

Define the rescaled one-part Schur polynomials sk = sk(t1, t2, . . . ) by

e−
1
ψ
(t1x+t2x2+t3x3+... ) = s0 + s1x + s2x

2 + . . .

Theorem

The generating function R of residual polynomials for the map F is

exp(− ξ
ψ
R) = 1 + ξs1 + ξ(ξ + ψ)s2 + ξ(ξ + ψ)(ξ + 2ψ)s3 . . . .

It is a solution to the scaled KP hierarchy of partial differential equations.
In particular, it solves the first scaled KP equation of the form

∂2R
∂t22

= 2ψξ

(
∂2R
∂t21

)2

+
4

3

∂2R
∂t1∂t3

− 1

3
ψ2∂

4R
∂t41

.

For general case, this generating function must be corrected. For g = 0,
correction terms are known up to codimension 5.
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Generating function for double Hurwitz numbers in genus 0

Any subvariety in PH admits a degree, which is the intersection index of
the class 1

1−ξ , ξ = O(1). The degree of the double singularity space is,
essentially, the double Hurwitz number hg ;κ,λ. For g = 0 and a given λ,
we collect the double Hurwitz numbers into a generating function

h(λ) =
∑
κ

hκ,(λ)qk1qk2 . . . .

Theorem

The generating functions h(λ) are polynomials in the generating functions

zd ,r (q) =
∑
K ,n

1

n!

(
n + r − 3

d

)
Kn+r−3−d

∑
k1+···+kn=K

n∏
i=1

kkii
ki !

qki .
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Recursion

The proof of the Theorem is effective and based on a recursion for a
certain generating function for the enhanced functions h(λ). The
enhancement is achieved by assigning powers of ψ-classes to the additional
marked points.

Several explicit formulas:

h(2) = z0,1 + z1,1,

h(3) = z0,1 −
z20,1

2
+ 3 z1,1 + 2 z2,1,

h(4) = z0,1 −
5 z20,1

2
+ 6 z1,1 − 2 z0,1 z1,1 + 11 z2,1 + 6 z3,1,

h(2,2) = −6 z0,1 + z20,1 + z0,2 − 11 z1,1 + 2 z1,2 − 6 z2,1 + 2 z2,2,

h(2,2,2) = 85 z0,1 − 40 z20,1 − 18 z0,2 + 6 z0,1 z0,2

+ z0,3 + 225 z1,1 − 24 z0,1 z1,1 − 51 z1,2 + 6 z0,1 z1,2 + 3 z1,3

+ 274 z2,1 − 84 z2,2 + 6 z2,3 + 120 z3,1 − 54 z3,2 + 6 z3,3.
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Thank you
for your attention
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