On the rationality of Fano 3 -folds over non-closed fields
 (based on a joint work with A. Kuznetsov)

Yuri Prokhorov

Algebraic geometry and arithmetic: a conference on the occasion of V.V. Nikulin 70th birthday

Steklov Mathematical Institute

October 22-23, 2020, Moscow

Fano $=$ smooth Funo 3-fold over

$$
k \neq F, \quad \text { char } h=0
$$

Invariants X Fano $p(X)$ Picard munher

$$
\begin{aligned}
& P_{i c}(X)=\mathbb{Z}^{P} \\
& P(\bar{X}) \\
& P_{i c}(X) \subset X_{\otimes} \bar{k} \\
& P_{i c}(\bar{X})^{G} \subset P_{i c}(\bar{X})
\end{aligned}
$$

If $X(k)=\phi \Rightarrow$ ":
$-K_{x}$ index (Fano)

$$
i(X)=\max \left\{i \quad 1-k_{\bar{x}}=i H\right\}
$$

$$
-k_{\bar{x}}=i+1 \leftarrow
$$

Degree $\left.d(X)=H^{3}\right]^{i(X)>1}$
Genus $\left.g(x)=\frac{1}{2}\left(-k_{x}\right)^{3}+1\right]$

$$
i(x)=1 .
$$

Fact X Fino 3 fold

$$
\begin{aligned}
& \Rightarrow i(x) \leqslant 4 \\
& i(x)=4 \quad x=p^{3} \\
& i(x)=3 \Rightarrow x=Q \subset \mathbb{P}^{4} \\
& i(x)=1 \text { orr } 2 \text {. (our assumption) } \\
& i(x)=2 \Rightarrow \text { duff } \\
& \text { deil Mezzo } \\
& i(x)=1 \stackrel{\text { def }}{\Rightarrow} \text { prime Fold. }
\end{aligned}
$$

$$
k=t \quad p(X)=1
$$

15 irted. families Fanos.
del Pezzo cuse $\Rightarrow d(X)=1, \ldots, 5$

$$
t(x)=1 \quad \Rightarrow g=2, \ldots, 10,12 .
$$

prime
tano 3 -folds
Rationality

$$
\begin{aligned}
& \text { d } \\
& d(X)=1,, 3, \begin{array}{l}
X_{\text {rational }} \text { uot } \\
\text { de } 1 \text { Pezzoo }
\end{array}
\end{aligned}
$$

$g(X)=2, \ldots, 6,8, \Rightarrow X_{\text {rationa }}$ not ($(X)=4,5$ s. $g(x)=7,9,10,12$ vational.
Rematk, $g(X)=f_{\text {and }}, 4$ kwown general member of famity

$$
\frac{\text { rem }}{g=10}=X \text { rational }
$$

$$
\Leftrightarrow \dot{X}(k) \neq \phi \Leftrightarrow \underset{\frac{\text { family of }}{\text { conics }}}{F_{2}(X) l}
$$

Remapk. $F_{2}(\bar{X})$ abeli an conics savfoce. $g=9 \quad \times$ ratbonal \Longleftrightarrow

$$
F_{3}(X)(k) \neq \phi
$$

fomily of $p_{c}=0$
Remart F (\bar{x}) ahelian

$$
\begin{aligned}
& k \neq k \quad p(\bar{X})=1 \\
& \left.\begin{array}{l}
d=5 \\
d e / p e \geqslant 20
\end{array}\right] \Rightarrow \times \text { ratioual. } \\
& g=7 \underset{\text { prime }}{ } 12 \Rightarrow \mathbb{i}_{\pi}^{\text {ratioun }} \\
& \text { Theorem. }
\end{aligned}
$$

G-Fano 3-folds with $\rho>1$ over $\mathbb{k}=\overline{\mathbb{k}} \quad[\mathrm{P}-2013]$

Sarkisov links

Theorem 1 Let $X=X_{6}$ be a del Pezzo 3-fold with $\rho(X)=1$ and $\rho\left(X_{\overline{\mathbb{k}}}\right)>1$. Suppose that X has $a \mathbb{k}$-point x. Then there exists the following Sarkisov link

where σ is the blowup of x and φ is an extremal Mori contraction. Moreover:

- $X_{\overline{\mathrm{k}}} \simeq \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \Longrightarrow X^{+} \simeq \mathbb{P}^{3}$ and φ is the blowup of three conjugate points.
- $X_{\overline{\mathbb{k}}} \simeq W_{6} \Longrightarrow X^{+}=X_{2}^{+} \subset \mathbb{P}^{3}$ is a quadric and φ is a \mathbb{P}^{1}-bundle.

In particular, X is \mathbb{k}-rational.

Theorem 2 Let $X=X_{2 g-2} \subset \mathbb{P}^{g+1}$ be a Fano 3-fold with $\operatorname{Pic}(X)=\mathbb{Z} \cdot K_{X}$ and $\rho\left(X_{\overline{\mathbb{k}}}\right)>1$. Suppose that X has \mathbb{k}-point x which does not lie on a line. Then there exists the following Sarkisov link

where σ is the blowup of x and φ is an extremal Mari contraction. Moreover:
($g=16 \Longrightarrow X_{\mathbb{k}}^{+} \simeq \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$ and φ is the blowup of a smooth rational curve of degree 6 . In particular, X is \mathbb{k}-rational.

- $g=15 \Longrightarrow X^{+}=X_{5}^{+} \subset \mathbb{P}^{6}$ is a smooth del Pezzo 3-fold of degree 5 and φ is the blowup of a disjoint union of two conics. In particular, X is \mathbb{k}-rational.
? e - $g=13 \Longrightarrow X^{+}=X_{3}^{+} \subset \mathbb{P}^{4}$ is a 4-nodal cubic 3-fold and φ is the blowup of singular points.
$? ~ ค \cdot g=11 \Longrightarrow X^{+} \simeq \mathbb{P}^{2}$ and φ is a conic bundle with discriminant curve of degree 4.

Corollary

k-unirational.
$g=11$

$$
\begin{aligned}
& P(\bar{X})=2 \mathrm{~K} / \mathrm{B} \quad f: Y \rightarrow \mathbb{P}^{2}{ }_{D} \rightarrow \\
& p(\bar{Y})=3 \\
& \text { orev } \sqrt{2} \text { not comich minimel. }
\end{aligned}
$$

$$
\Delta \text { discriminest }
$$

$f^{-1}(\Delta)$
XXXXXX $\tilde{\hat{\lambda}}$ étale. splits over $\frac{t}{t}$
Th (Bert smooth
Th (Benoist, Witton birg)
X / s comice bundu Stat
\triangle smooth conmectel
(a) π / Δ spotints orev k^{\prime} / k
(b) x / S ddmits quadratici
(c) \triangle nou-hyperelliptic
$\Longrightarrow X$ is not h-ratioual

Corollary. $\begin{aligned} & X=11 \\ & \text { notional. }\end{aligned}$

$$
\begin{array}{r}
\underline{g}=13 \\
\bar{X} \rightarrow \mathbb{P}^{\prime} \times \mathbb{P}^{\prime} \times \mathbb{P}^{\prime} \times \mathbb{P}^{\prime} \times\left(\mathbb{P}^{\prime} \times \mathbb{P}^{\prime}\right. \\
\left.\frac{\bar{X}}{(1,1,1)}\right) \\
h^{1,2}(X)=1
\end{array}
$$

blowup of ell. curve
X k-uriorationul.
$G=$ image of $\operatorname{Cial}\left(\frac{k}{k} / k\right)$ in Ant (Pic $(\bar{x}))$

$$
\underset{\text { transitive }}{G \in S_{4}} \frac{\mathbb{S}_{4}^{4}}{\left(A_{4}, D_{4}, \mu_{2} \times M_{q}\right.}
$$

transitive
(i) $G=\mu_{2} \times\left(y_{2}\right.$

$$
G_{1} \supset \mu_{2} \times \| n_{2}
$$

Degemeration techignes
(Shinder, Nicuisc).
$\left[\begin{array}{l}\text { Shinder, Nicuise } \\ \text { stahly rationalsty "open" condititn } \\ X \underset{\text { dogen. }}{\rightarrow} X^{\prime} \text { not stably ral. } \Rightarrow\end{array}\right.$ -1-1very general nomber

$$
X=\left\{x_{0} y_{0} t_{0} z_{0}\right.
$$

$$
\left.=x_{1} y_{1}, t, z_{1}\right\}
$$

$$
\subset \mathbb{P}^{\prime} \times P^{\prime} \times \mathbb{P} \times \mathbb{P}^{\prime}
$$

toric, singular,

$$
R_{k^{\prime} / k}
$$

$C_{i m}^{\prime}$
 Weil ext.

$$
\rightarrow C N: R_{k^{\prime} / 2} \mathbb{G}_{m}^{1} \longrightarrow \mathbb{I}_{m}^{1}
$$

$$
\underbrace{R_{1}^{(1)}}_{\text {k/k }} \mathbb{C}_{m} C_{\text {opon }}
$$

- Known to bo non-stebly $H^{\prime}(G, \operatorname{Pic}(\tilde{X}))^{\text {rat. }}$ monith.

