On the rationality of Fano 3-folds over non-closed fields

(based on a joint work with A. Kuznetsov)

Yuri Prokhorov

Algebraic geometry and arithmetic: a conference on the occasion of V.V. Nikulin 70th birthday

Steklov Mathematical Institute

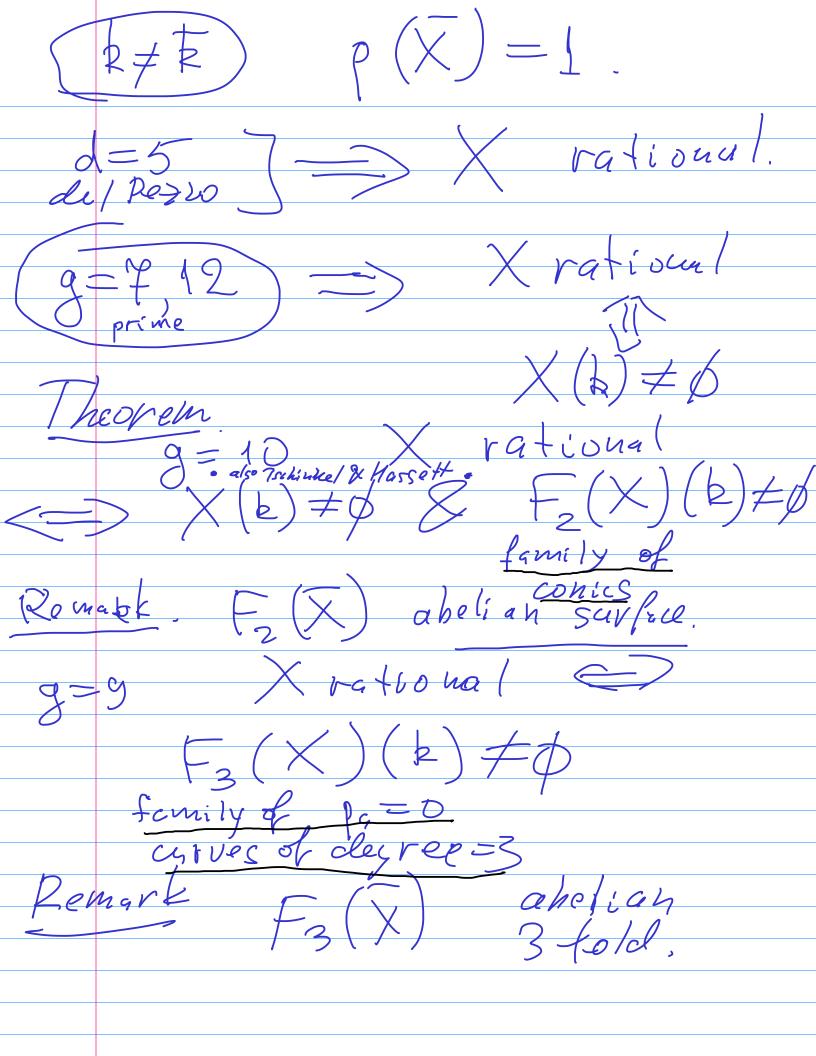
October 22–23, 2020, Moscow

Fano = smooth tano $\frac{1}{2} = \int d d \quad \text{over} \quad h = 0$ Invariants X Fano $P(X) \quad P_{icg} \times d \quad min \text{ her}$ $P_{ic}(X) = Z$ $P(X) \quad X = X \otimes E$ $P_{ic}(X) \subset P_{ic}(X) \subset P_{ic}(X)$ G = Gol $If \quad X(k) = p \Rightarrow = i$ index (Fano) $i(X) = \max i - k = iH$

 $-k_{\overline{x}}=i+l$ Degree d(X)=H3]i(X)>1 Genus $g(X) = \frac{1}{2}(-k_X)^3 + 1$ $\dot{\epsilon}(\lambda)$ = λ . Fact X Fano 3-fold = (X) < 4 (X) = 4 X = (3) $i(X) = 3 \implies X = Q < P$ |X| = | or 2 (our assumption) $|X| = 2 \Rightarrow di | Pezzo$ |X| = 3 - loldi $|X| = 1 \Rightarrow prime Fano$

p = 115 irred. Lamilies Fanos. del Pezzo cusc) 7d (X = 1, ..., 5 $i(x) = 1 \implies g = 2, ..., 10, 12.$ prime

tano 3-(olds) Rationality d(X)=1...3=Xust del Pezzoa ()=2,...6,8 = Not only these forwards are interesting for coasoderation (g(X)=7,9,10,12) vational. Remark g(X)=5 and 4 known
general member of famity
not rational.



Bemist & Wittenbers Techinhel Masself. \times rat = $(\times)(b)=0$ Fline over 2. on techniques Wittenhouse Fano $3 \leq folds$ with p(X) = 1, p(X) > 1. $P_{ic}(\overline{X}) = \overline{Z}^{p} = \overline{Z}^{p}$ 2-den analog de Pezzo surfices 3-dim case p(X)>1

Mori-Mukai 88 families Exemple P3 - BIPS

Cartamo Carlinite group

Cartamo Ca

G-Fano 3-folds with $\rho > 1$ over $\mathbb{k} = \bar{\mathbb{k}}$ [P- 2013]

_			G -del Pezzo 3-folds with $\rho > 1$				
-	$\rho(X)$	H^3	\overline{X}	$h^{1,2}$	Rat?	1/2	
•	3	6	$\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$	0	+	1/2	
•	2	6	$W_6 \subset \mathbb{P}^2 \times \mathbb{P}^2$, divisor of bidegree $(1,1)$	0	+	, –	
-		G.	Fano 3-folds with $\iota(X) = 1$ and $\rho > 1$,	
-	$\rho(X)$	g(X)	X	$h^{1,2}$	Rat?	を	
9	2		(a) $X \subset \mathbb{P}^2 \times \mathbb{P}^2$, divisor of bidegree $(2,2)$	9	_	- \	\
			b) $X \stackrel{2:1}{\longrightarrow} W_6$, branch divisor $\in -K_{W_6} $				1
٤	3	7	$X \xrightarrow{2:1} \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$, branch divisor $\in -$	8	_	• (
			$K_{\mathbb{P}^1 \times \mathbb{P}^1 imes \mathbb{P}^1}$			\times	
	(2)	11 ($(D_1 \cap D_2 \cap D_3 \subset \mathbb{P}^3 \times \mathbb{P}^3,)D_i \text{ is of bidegree } (1,1)$	3	+	4	V
	4	13	$X_{(1,1,1,1)} \subset \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$	1	+	123	
	• 2	15	blowup of $Q \subset \mathbb{P}^4$ along a twisted quartic curve	$\int 0$	+	•	11
	3	16	$D_{(0,1,1)} \cap D_{(1,0,1)} \cap D_{(1,1,0)} \subset \mathbb{P}^2 \times \mathbb{P}^2 \times \mathbb{P}^2$	0	+		
-							

Assumption $X(t) \neq \emptyset$. $z \in X$ $t_2 - point$.

Sarkisov links

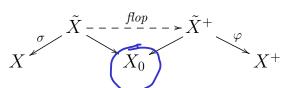
Theorem 1 Let $X = X_6$ be a <u>del Pezzo 3-fold</u> with $\rho(X) = 1$ and $\rho(X_{\bar{k}}) > 1$. Suppose that X has a k-point x. Then there exists the following Sarkisov link

where σ is the blowup of x and φ is an extremal Mori contraction. Moreover:

- $X_{\bar{k}} \simeq \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \Longrightarrow X^+ \simeq \mathbb{P}^3$ and φ is the blowup of three conjugate points.
- $X_{\bar{k}} \simeq W_6 \Longrightarrow X^+ = X_2^+ \subset \mathbb{P}^3$ is a quadric and φ is a \mathbb{P}^1 -bundle.

In particular, X is k-rational.

Theorem 2 Let $X = X_{2g-2} \subset \mathbb{P}^{g+1}$ be a Fano 3-fold with $\operatorname{Pic}(X) = \mathbb{Z} \cdot K_X$ and $\rho(X_{\overline{\Bbbk}}) > 1$. Suppose that X has a $\overline{\Bbbk}$ -point x which does not lie on a line. Then there exists the following Sarkisov link

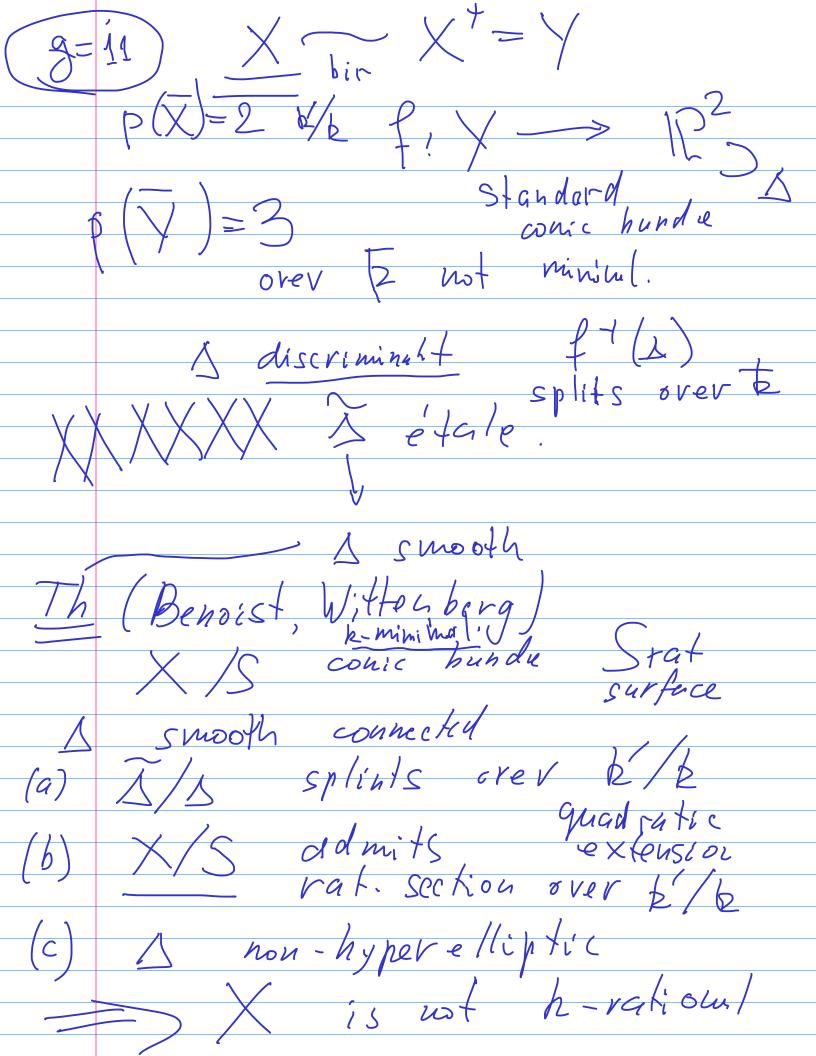


where σ is the blowup of x and φ is an extremal Mori contraction. Moreover:

- $g = 16 \Longrightarrow X_{\bar{\Bbbk}}^+ \simeq \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$ and φ is the blowup of a smooth rational curve of degree 6. In particular, X is $\underline{\Bbbk}$ -rational.
- $g = 15 \Longrightarrow X^+ = X_5^+ \subset \mathbb{P}^6$ is a smooth del Pezzo 3-fold of degree 5 and φ is the blowup of a disjoint union of two conics. In particular, X is k-rational.
- $g = 13 \Longrightarrow X^+ = X_3^+ \subset \mathbb{P}^4$ is a 4-nodal cubic 3-fold and φ is the blowup of singular points.
 - $g=11 \Longrightarrow X^+ \simeq \mathbb{P}^2$ and φ is a conic bundle with discriminant curve of degree 4.

=> Corollary

k-univational



Corollary. X not valional. $\frac{2}{3} = 13$ $\frac{1}{3} \times \frac{1}{2} \times$ blowup of ell. curve k- uritrational. in Aut (Pic(X)) Transitive 2 My

Degeneration techiques

Shinder, Nicuisc.

Stably rationality "open" and tyn.

Stably rationality "open" and tyn. Very general member toric singular ODP'S Reilext. 3 N: RKA Gu > Cu RV/k Im Opon.

Now u to bo non-steed by

Crow u Carlor Carl. smooth