Classification of degenerations and Picard lattices of Kahlerian K3 surfaces with finite symplectic automorphism groups.

Viacheslav V. Nikulin

Steklov Mathematical Institute and University of Liverpool

Abstract: I will speak about these my results which I obtained during last years – 2013—2020. This classification is almost finished now. Only for very small symplectic automorphism groups — of order 4, 3, 2 and 1 — it is not completely finished now.

MIAN, 22 October 2020

1 Classification of degenerations of K3 surfaces with finite symplectic automorphism groups.

Let X be a complex K3-surface. That is X is a compact complex surface which has a non-zero holomorphic differential form $\omega_X \in \Omega^2[X]$ with zero divisor $(K_X = 0)$ and with the irregularity $q(X) = \dim \Omega^1[X] = 0$. Then $H^2(X, \mathbb{Z})$ with the intersection pairing is an even unimodular lattice L_{K3} with the signature (3, 19). For a non-zero holomorphic 2-form $\omega_X \in \Omega^2[X]$ we have $H^{2,0}(X) = \Omega^2[X] = \mathbb{C}\omega_X$. The primitive sublattice

$$S_X = H^2(X, \mathbb{Z}) \cap H^{1,1}(X) = \{ x \in H^2(X, \mathbb{Z}) \mid x \cdot H^{2,0}(X) = 0 \} \subset H^2(X, \mathbb{Z})$$

is the Picard lattice of X generated by 1-st Chern classes of all linear bundles over X. Primitive sublattice means that $H^2(X, \mathbb{Z})/S_X$ does not have a torsion.

Let G be a finite symplectic automorphism group of X. Symplectic means that for any $g \in G$, a non-zero holomorphic differential form $\omega_X \in H^{2,0}(X) = \Omega^2[X] = \mathbb{C}\omega_X$ is preserved: $g^*(\omega_X) = \omega_X$. For a G-invariant sublattice $M \subset H^2(X,\mathbb{Z})$, by $M^G = \{x \in$ $M \mid G(x) = x\}$ we denote the fixed sublattice of M, and by $M_G = (M^G)_M^{\perp}$ we denote the coinvariant sublattice of M. By [Nik1], [Nik2], the coinvariant sublattice $S_G = H^2(X, \mathbb{Z})_G = (S_X)_G$ is a Leech type lattice: S_G is negative definite, it has no elements with square (-2), G acts trivially on the discriminant group $A_{S_G} = (S_G)^*/S_G$, and $(S_G)^G = \{0\}$.

For a general pair (X, G), the Picard lattice $S_X = S_G$, and arbitrary (X, G) can be considered as Kählerian K3 surfaces with the condition $S_G \subset S_X$ on the Picard lattice (in terminology of [Nik2]). The dimension of their moduli is equal to $20 - \operatorname{rk} S_G$.

Let $E \subset X$ be a non-singular irreducible rational curve (that is $E \cong \mathbb{P}^1$). Equivalently, $\alpha = cl(E) \in S_X$ has $\alpha^2 = -2$, α is effective and α is numerically effective: $\alpha \cdot D \ge 0$ for any irreducible curve D of X such that $cl(D) \neq \alpha$.

Let us consider t non-singular irreducible rational curves E_1, \ldots, E_t of X with classes $\alpha_i = cl(E_i) \in S_X$ such that their orbits $G(E_1), \ldots, G(E_t)$ are different (that is they don't intersect). Let us consider the primitive sublattice

$$S = [S_G, G(\alpha_1), \dots, G(\alpha_t))]_{pr} = [S_G, \alpha_1, \dots, \alpha_t]_{pr} \subset S_X$$

of Picard lattice S_X which is generated by the coinvariant sublattice S_G and by all classes of orbits $G(E_1), \ldots G(E_t)$, and we assume that S is negative definite.

Since S_G has no elements with square (-2), we have

$$\operatorname{rk} S = \operatorname{rk} S_G + t \le 19$$

(19 is the number of negative squares of the lattice $H^2(X, \mathbb{Z})$), and elements of orbits $G(\alpha_1), \ldots G(\alpha_t)$ give the bases of the root system $\Delta(S)$ of elements with square (-2) in S.

All curves $G(E_1), \ldots, G(E_t)$ of X can be contracted to Du Val singularities of the types of connected components of the Dynkin diagram of the basis (ADE-singularities). The group G will act on the corresponding singular K3 surface \overline{X} with the Du Val singularities.

For a general such data $(X, G, G(E_1), \ldots, G(E_t))$, the Picard lattice $S_X = S$ and the data can be considered as a degeneration of the codimension t of Kählerian K3 surfaces (X, G) with finite symplectic automorphism groups G. Really, the dimension of moduli of Kählerian K3 surfaces with the condition $S \subset S_X$ on the Picard lattice is equal to

$$20 - \operatorname{rk} S = 20 - \operatorname{rk} S_G - t = (20 - \operatorname{rk} S_G) - t,$$

where $20 - \operatorname{rk} S_G$ is the dimension of moduli of pairs (X, G).

We can consider only maximal finite symplectic automorphism groups G with the same coinvariant lattice S_G that is G = Clos(G). By global Torelli Theorem for K3 surfaces [PS], [BR], it is equivalent to

$$G|S_G = \{g \in O(S_G) \mid g \text{ is identity on } A_{S_G} = (S_G)^*/S_G\},\$$

in particular, G is defined by the coinvariant lattice S_G .

The type of the degeneration is given by the Dynkin diagram and by its Dynkin subdiagrams

$$(Dyn(G(\alpha_1)), \dots, Dyn(G(\alpha_t))) \subset Dyn(G(\alpha_1) \cup \dots \cup G(\alpha_t))$$

and their types. Numeration of Dynkin subdiagrams $Dyn(G(\alpha_i))$ and connected components of the Dynkin diagram $Dyn(G(\alpha_1) \cup \cdots \cup G(\alpha_t))$ should agree.

In difficult cases, we also consider the matrix of subdiagrams which is given by Dynkin subdiagrams

$$(Dyn(G(\alpha_i)), Dyn(G(\alpha_j))) \subset Dyn(G(\alpha_i) \cup G(\alpha_j))$$

and their types for $1 \le i < j \le t$.

By global Torelli Theorem for K3 surfaces [PS], [BR], the type of the abstract group G = Clos(G), which is equivalent to the isomorphism class of the coinvariant lattice S_G , and the type of the degeneration give the main invariants of the degeneration. The Picard lattice S gives the much more delicate invariant of the degeneration.

For groups G = Clos(G) of the order |G| > 6, the classification of the types of degenerations and the Picard lattices S is given in tables of [Nik9]—[Nik12].

I give them below and comment. They give the main results of the classification. Table 1 gives classification of degenerations of the codim= 1. Of course, it is the most important because it gives a description of orbits $G(E_i)$. All of them have types $m\mathbb{A}_1$ or $m\mathbb{A}_2$.

a) We have $\operatorname{rk} S_G \leq 18$ because $\operatorname{rk} S_G + 1 \leq 19$. Groups G with $\operatorname{rk} S_G = 19$ have no degenerations, and they are not presented in Table 1. Lattices $S = S_G$ of all ranks were classified in my papers (for Abelian groups) 1979, Sh. Mukai 1988, Xiao 1996, Kondō 1998, Hashimoto 2010).

b) For degenerations $(\mathbf{n} = 10(G = D_8), 2\mathbb{A}_1)$ and $(\mathbf{n} = \mathbf{34}(G = \mathfrak{S}_4,), 6\mathbb{A}_1))$ only, the Picard lattice S of the degeneration is not defined by the type: for these cases, there are two possibilities for S.

All possibilities are given in Table 1.

Table 2 gives classification of degenerations of codimensions $t \ge 2$ for groups G with $\mathbf{n} \ge 12$. Equivalently, either $|G| \ge 12$ or $G = Q_8$.

Then $\operatorname{rk} S_G \leq 19 - t \leq 17$, and groups G with $\operatorname{rk} S_G = 19$, 18 are absent in this table.

Genuses of the Picard lattices S of the degenerations are given in the Table. By *, I denote cases (almost in all cases) when I prove that the lattice S is unique up to isomorphism. Table 3 gives similar classification of degenerations of codimensions $t \ge 2$ for the remaining group with $\mathbf{n} = 10$, that is $G = D_8$. Then $\operatorname{rk} S_G = 15$, and there are degenerations of codimensions t = 2, 3, 4. There are many possibilities.

Table 4 gives similar classification of degenerations of codimensions $t \ge 2$ for the remaining group G with $\mathbf{n} = 9$, that is $G = (C_2)^3$. Then $\operatorname{rk} S_G = 14$, and there are degenerations of codimensions t = 2, 3, 4, 5. There are not so many possibilities than for the previous case. Additionally to Tables 1—4, in Table 5, I give

List 1, which is important for the classification of the Picard lattices S for K3 surfaces. In tables 1—4, I additionally denote by o (old) cases when a degeneration of K3 surfaces with a symplectic automorphism group G_1 has, actually, larger symplectic automorphism group G_2 with

$$|G_1| < |G_2|.$$

The group G_2 has less orbits and less codimension than G_1 . For classification of Picard lattices S of K3 surfaces, the lines of Tables 1—4, which are denoted by o, must be deleted. In **List 1**, the type of the degeneration for the group G_1 is shown to the left from the sign \Leftarrow , and for the group G_2 it is shown to the right.

These cases are very interesting since they give cases when for a degeneration the finite symplectic automorphism group G_1 increases to G_2 surprisingly.

These cases are similar to the case which I had found in 1975, when I had shown that if a K3 gets 16 (sixteen) not intersected \mathbb{P}^1 (a degeneration 16A₁), then it is Kummer and it gets a symplectic automorphism group $(C_2)^4$ with the orbit 16A₁. That is C_1 increases to $(C_2)^4$.

n	G	i	G	$\operatorname{rk} S_G$	q_{S_G}	Deg	$\operatorname{rk} S$	q_S
1	2	1	C_2	8	2_{II}^{+8}	\mathbb{A}_1	9	2_7^{+9}
						$2\mathbb{A}_1$	9	$2_{II}^{-6}, 4_3^{-1}$
2	3	1	C_3	12	3^{+6}	\mathbb{A}_1	13	$2^{-1}_3, 3^{+6}$
						$3\mathbb{A}_1$	13	$2^{+1}_1, 3^{-5}$
3	4	2	C_{2}^{2}	12	$2_{II}^{-6}, 4_{II}^{-2}$	\mathbb{A}_1	13	$2^{+7}_3, 4^{+2}_{II}$
						$2\mathbb{A}_1$	13	$2_{II}^{-4}, 4_7^{-3}$
						$4\mathbb{A}_1$	13	$2_{II}^{-6}, 8_3^{-1}$
4	4	1	C_4	14	$2^{+2}_{2}, 4^{+4}_{II}$	\mathbb{A}_1	15	$2_5^{-3}, 4_{II}^{+4}$
						$2\mathbb{A}_1$	15	4_1^{-5}
						$4\mathbb{A}_1$	15	$2^{+2}_{2}, 4^{+2}_{II}, 8^{+1}_{7}$
						\mathbb{A}_2	15	$2_1^{+1}, 4_{II}^{-4}$
6	6	1	D_6	14	$2_{II}^{-2}, 3^{+5}$	\mathbb{A}_1	15	$2^{-3}_7, 3^{+5}_7$
						$2\mathbb{A}_1$	15	$4_3^{-1}, 3^{+5}$
						$3\mathbb{A}_1$	15	$2_1^{-3}, 3^{-4}$
						$6\mathbb{A}_1$	15	$4_1^{+1}, 3^{+4}$
9	8	5	C_{2}^{3}	14	$2_{II}^{+6}, 4_2^{+2}$	$2\mathbb{A}_1$	15	$2_{II}^{-4}, 4_5^{-3}$
						$4\mathbb{A}_1$	15	$2_{II}^{+6}, 8_1^{+1}$
						$8\mathbb{A}_1$	15	$2_{II}^{+6}, 4_1^{+1}$
10	8	3	D_8	15	4_1^{+5}	\mathbb{A}_1	16	$2_1^{+1}, 4_7^{+5}$
						$(2\mathbb{A}_1)_I$	16	$2_6^{-2}, 4_6^{-4}$
						$(2\mathbb{A}_1)_{II}$	16	$2_{II}^{+2}, 4_{II}^{+4}$
						$4\mathbb{A}_1$	16	$4_7^{+3}, 8_1^{+1}$
						$8\mathbb{A}_1$	16	4_0^{+4}
						$2\mathbb{A}_2$	16	4_{II}^{+4}
12	8	4	Q_8	17	$2_7^{-3}, 8_{II}^{-2}$	$8\mathbb{A}_1$	18	$2_7^{-3}, 16_3^{-1}$
						\mathbb{A}_2	18	$2_6^{-2}, 8_{II}^{-2}$
16	10	1	D_{10}	16	5^{+4}	\mathbb{A}_1	17	$2^{+1}_7, 5^{+4}_7$
						$5\mathbb{A}_1$	17	$2^{+1}_7, 5^{-3}$

Table 1: Types and Picard lattices S of degenerations of codimension 1 of Kählerian K3 surfaces with finite symplectic automorphism group G = Clos(G).

n	G	i	G	$\operatorname{rk} S_G$	q_{S_G}	Deg	$\operatorname{rk} S$	q_S
17	12	3	\mathfrak{A}_4	16	$2_{II}^{-2}, 4_{II}^{-2}, 3^{+2}$	\mathbb{A}_1	17	$2^{-3}_{7}, 4^{+2}_{II}, 3^{+2}$
						$3\mathbb{A}_1$	17	$2_1^{-3}, 4_{II}^{+2}, 3^{-1}$
						$4\mathbb{A}_1$	17	$2_{II}^{-2}, 8_3^{-1}, 3^{+2}$
						$6\mathbb{A}_1$	17	$4_1^{-3}, 3^{+1}$
						$12\mathbb{A}_1$	17	$2_{II}^{-2}, 8_1^{+1}, 3^{-1}$
18	12	4	D_{12}	16	$2_{II}^{+4}, 3^{+4}$	\mathbb{A}_1	17	$2^{+5}_{7}, 3^{+4}$
						$2\mathbb{A}_1$	17	$2_{II}^{+2}, 4_7^{+1}, 3^{+4}$
						$3\mathbb{A}_1$	17	$2^{-5}_5, 3^{-3}_5$
						$6\mathbb{A}_1$	17	$2_{II}^{-2}, 4_1^{+1}, 3^{+3}$
21	16	14	C_{2}^{4}	15	$2_{II}^{+6}, 8_I^{+1}$	$4\mathbb{A}_1$	16	$2_{II}^{+4}, 4_{II}^{+2}$
						$16\mathbb{A}_1$	16	2_{II}^{+6}
22	16	11	$C_2 \times D_8$	16	$2_{II}^{+2}, 4_0^{+4}$	$2\mathbb{A}_1$	17	4_7^{+5}
						$4\mathbb{A}_1$	17	$2_{II}^{+2}, 4_0^{+2}, 8_7^{+1}$
						$8\mathbb{A}_1$	17	$2_{II}^{+2}, 4_7^{+3}$
26	16	8	SD_{16}	18	$2^{+1}_{7}, 4^{+1}_{7}, 8^{+2}_{II}$	$8\mathbb{A}_1$	19	$2_1^{+1}, 4_1^{+1}, 16_3^{-1}$
						$2\mathbb{A}_2$	19	$2_5^{-1}, 8_{II}^{-2}$
30	18	4	$\mathfrak{A}_{3,3}$	16	$3^{+4}, 9^{-1}$	$3\mathbb{A}_1$	17	$2_5^{-1}, 3^{-3}, 9^{-1}$
						$9\mathbb{A}_1$	17	$2^{-1}_3, 3^{+4}$
32	20	3	$Hol(C_5)$	18	$2_6^{-2}, 5^{+3}$	$2\mathbb{A}_1$	19	$4_1^{+1}, 5^{+3}$
						$5\mathbb{A}_1$	19	$2^{+3}_1, 5^{-2}$
						$10\mathbb{A}_1$	19	$4_5^{-1}, 5^{+2}$
						$5\mathbb{A}_2$	19	$2^{-1}_5, 5^{-2}$
33	21	1	$C_7 \rtimes C_3$	18	7^{+3}	$7\mathbb{A}_1$	19	$2_1^{+1}, 7^{+2}$
34	24	12	\mathfrak{S}_4	17	$4_3^{+3}, 3^{+2}$	\mathbb{A}_1	18	$2_5^{-1}, 4_1^{+3}, 3^{+2}$
						$2\mathbb{A}_1$	18	$2^{+2}_2, 4^{+2}_{II}, 3^{+2}_{II}$
						$3\mathbb{A}_1$	18	$2^{+1}_7, 4^{-3}_5, 3^{-1}_{-1}$
						$4\mathbb{A}_1$	18	$4_3^{-1}, 8_3^{-1}, 3^{+2}$
						$(6\mathbb{A}_1)_I$	18	$2^{-2}_4, 4^{+2}_0, 3^{+1}_0$
						$(6\mathbb{A}_1)_{II}$	18	$2_{II}^{+2}, 4_{II}^{-2}, 3^{+1}$
						$8\mathbb{A}_1$	18	$4^{+2}_{2}, 3^{+2}_{2}$
						$12\mathbb{A}_1$	18	$4_5^{-1}, 8_7^{+1}, 3^{-1}$
						$6\mathbb{A}_2$	18	$4_{II}^{-2}, 3^{+1}$

n	G	i	G	$\operatorname{rk} S_G$	q_{S_G}	Deg	$\operatorname{rk} S$	q_S
39	32	27	2^4C_2	17	$2_{II}^{+2}, 4_0^{+2}, 8_7^{+1}$	$4\mathbb{A}_1$	18	4_{6}^{+4}
						$8\mathbb{A}_1$	18	$2_{II}^{+2}, 4_7^{+1}, 8_7^{+1}$
						$16\mathbb{A}_1$	18	$2_{II}^{+2}, 4_6^{+2}$
40	32	49	$Q_8 * Q_8$	17	4_7^{+5}	$8\mathbb{A}_1$	18	4_{6}^{+4}
46	36	9	$3^{2}C_{4}$	18	$2_6^{-2}, 3^{+2}, 9^{-1}$	$6\mathbb{A}_1$	19	$4^{+1}_{7}, 3^{+1}, 9^{-1}$
						$9\mathbb{A}_1$	19	$2^{-3}_5, 3^{+2}$
						$9\mathbb{A}_2$	19	$2_5^{-1}, 3^{+2}$
48	36	10	$\mathfrak{S}_{3,3}$	18	$2_{II}^{-2}, 3^{+3}, 9^{-1}$	$3\mathbb{A}_1$	19	$2^{+3}_5, 3^{-2}, 9^{-1}$
						$6\mathbb{A}_1$	19	$4_1^{+1}, 3^{+2}, 9^{-1}$
						$9\mathbb{A}_1$	19	$2^{-3}_{7}, 3^{+3}$
49	48	50	2^4C_3	17	$2_{II}^{-4}, 8_1^{+1}, 3^{-1}$	$4\mathbb{A}_1$	18	$2_{II}^{-2}, 4_{II}^{+2}, 3^{-1}$
						$12\mathbb{A}_1$	18	$2_{II}^{-2}, 4_2^{-2}$
						$16\mathbb{A}_1$	18	$2_{II}^{-4}, 3^{-1}$
51	48	48	$C_2 \times \mathfrak{S}_4$	18	$2_{II}^{+2}, 4_2^{+2}, 3^{+2}$	$2\mathbb{A}_1$	19	$4_1^{+3}, 3^{+2}$
						$4\mathbb{A}_1$	19	$2_{II}^{+2}, 8_1^{+1}, 3^{+2}$
						$6\mathbb{A}_1$	19	$4_7^{-3}, 3^{+1}$
						$8\mathbb{A}_1$	19	$2_{II}^{-2}, 4_5^{-1}, 3^{+2}$
						$12\mathbb{A}_1$	19	$2_{II}^{-2}, 8_7^{+1}, 3^{-1}$
55	60	5	\mathfrak{A}_5	18	$2_{II}^{-2}, 3^{+1}, 5^{-2}$	\mathbb{A}_1	19	$2^{-3}_{7}, 3^{+1}, 5^{-2}_{7}$
						$5\mathbb{A}_1$	19	$2^{+3}_3, 3^{+1}, 5^{+1}_3$
						$6\mathbb{A}_1$	19	$4_1^{+1}, 5^{-2}$
						$10\mathbb{A}_1$	19	$4_7^{+1}, 3^{+1}, 5^{-1}$
						$15\mathbb{A}_1$	19	$2^{+3}_5, 5^{-1}_{-1}$
56	64	138	$\Gamma_{25}a_1$	18	$4_5^{+3}, 8_1^{+1}$	$8\mathbb{A}_1$	19	$4_4^{-2}, 8_5^{-1}$
						$16\mathbb{A}_1$	19	4_{5}^{+3}
61	72	43	$\mathfrak{A}_{4,3}$	18	$4_{II}^{-2}, 3^{-3}$	$3\mathbb{A}_1$	19	$2^{-1}_5, 4^{+2}_{II}, 3^{+2}_{II}$
						$12\mathbb{A}_1$	19	$8_1^{+1}, 3^{+2}$
65	96	227	$2^4 D_6$	18	$2_{II}^{-2}, 4_7^{+1}, 8_1^{+1}, 3^{-1}$	$4\mathbb{A}_1$	19	$4_3^{-3}, 3^{-1}$
						$8\mathbb{A}_1$	19	$2_{II}^{-2}, 8_7^{+1}, 3^{-1}$
						$12\mathbb{A}_1$	19	4_5^{+3}
						$16\mathbb{A}_1$	19	$2_{II}^{+2}, 4_3^{-1}, 3^{-1}$
75	192	1023	$4^2\mathfrak{A}_4$	18	$2_{II}^{-2}, 8_6^{-2}$	$16\mathbb{A}_1$	19	$2_{II}^{-2}, 8_5^{-1}$

n	G	i	G	$\operatorname{rk} S_G$	Deg	$\operatorname{rk} S$	q_S
12	8	4	Q_8	17	$(8\mathbb{A}_1, 8\mathbb{A}_1) \subset 16\mathbb{A}_1 \ o$	19	$2_{II}^{-2}, 8_5^{-1} *$
					$(8\mathbb{A}_1, 8\mathbb{A}_1) \subset 8\mathbb{A}_2$	19	$2^{-3}_{7}, 3^{-1} *$
					$(8\mathbb{A}_1,\mathbb{A}_2) \subset 8\mathbb{A}_1 \amalg \mathbb{A}_2$	19	$2^{+2}_2, 16^{-1}_3 *$
					$(\mathbb{A}_2,\mathbb{A}_2)\subset 2\mathbb{A}_2 \ o$	19	$2_5^{-1}, 8_{II}^{-2} *$
16	10	1	D_{10}	16	$(\mathbb{A}_1, \mathbb{A}_1) \subset 2\mathbb{A}_1$	18	$2_6^{+2}, 5^{+4}$
					$(\mathbb{A}_1, 5\mathbb{A}_1) \subset 6\mathbb{A}_1$	18	$2_6^{+2}, 5^{-3}$
					$(5\mathbb{A}_1, 5\mathbb{A}_1) \subset 10\mathbb{A}_1$	18	$2_6^{+2}, 5^{+2} *$
					$(5\mathbb{A}_1, 5\mathbb{A}_1) \subset 5\mathbb{A}_2$	18	$3^{-1}, 5^{-2} *$
					$(\mathbb{A}_1, \mathbb{A}_1, 5\mathbb{A}_1) \subset 7\mathbb{A}_1$	19	$2^{+3}_{5}, 5^{-3}$
					$(\mathbb{A}_1, 5\mathbb{A}_1, 5\mathbb{A}_1) \subset 11\mathbb{A}_1$	19	$2^{+3}_5, 5^{+2}_5$
					$(\mathbb{A}_1, 5\mathbb{A}_1, 5\mathbb{A}_1) \subset \mathbb{A}_1 \amalg 5\mathbb{A}_2$	19	$2^{+1}_{7}, 3^{-1}, 5^{-2}_{7}$
					$(5\mathbb{A}_1, 5\mathbb{A}_1, 5\mathbb{A}_1) \subset 15\mathbb{A}_1$	19	$2^{-3}_1, 5^{-1} *$
					$(5\mathbb{A}_1, 5\mathbb{A}_1, 5\mathbb{A}_1) \subset 5\mathbb{A}_2 \amalg 5\mathbb{A}_1$	19	$2^{+1}_7, 3^{-1}, 5^{+1} *$
					$ \begin{pmatrix} 5\mathbb{A}_1 & 5\mathbb{A}_2 & 10\mathbb{A}_1 \\ & 5\mathbb{A}_1 & 5\mathbb{A}_2 \\ & & 5\mathbb{A}_1 \end{pmatrix} \subset 5\mathbb{A}_3 $	19	$4_1^{+1}, 5^{+1} *$
17	12	3	\mathfrak{A}_4	16	$(\mathbb{A}_1, \mathbb{A}_1) \subset 2\mathbb{A}_1 \ o$	18	$2^{+2}_{2}, 4^{+2}_{II}, 3^{+2} *$
					$(\mathbb{A}_1, 3\mathbb{A}_1) \subset 4\mathbb{A}_1 \ o$	18	$2_{II}^{-2}, 4_{II}^{+2}, 3^{-1} *$
					$(\mathbb{A}_1, 4\mathbb{A}_1) \subset 5\mathbb{A}_1$	18	$2_3^{+3}, 8_7^{+1}, 3^{+2} *$
					$(\mathbb{A}_1, 6\mathbb{A}_1) \subset 7\mathbb{A}_1$	18	$2^{+1}_1, 4^{+3}_7, 3^{+1} *$
					$(\mathbb{A}_1, 12\mathbb{A}_1) \subset 13\mathbb{A}_1$	18	$2^{+3}_3, 8^{+1}_1, 3^{-1} *$
					$(3\mathbb{A}_1, 4\mathbb{A}_1) \subset 7\mathbb{A}_1$	18	$2^{+3}_5, 8^{+1}_7, 3^{-1} *$
					$(3\mathbb{A}_1, 6\mathbb{A}_1) \subset 3\mathbb{A}_3$	18	$2_6^{+2}, 4_{II}^{-2} *$
					$(3\mathbb{A}_1, 12\mathbb{A}_1) \subset 15\mathbb{A}_1$	18	$2_1^{-3}, 8_1^{+1} *$
					$(4\mathbb{A}_1, 4\mathbb{A}_1) \subset 8\mathbb{A}_1 \ o$	18	$4_2^{+2}, 3^{+2} *$
					$(4\mathbb{A}_1, 4\mathbb{A}_1) \subset 4\mathbb{A}_2$	18	$2_{II}^{-2}, 3^{+3} *$
					$(4\mathbb{A}_1, 6\mathbb{A}_1) \subset 10\mathbb{A}_1$	18	$4_1^{+1}, 8_3^{-1}, 3^{+1} *$
					$(4\mathbb{A}_1, 12\mathbb{A}_1) \subset 16\mathbb{A}_1 \ o$	18	$2_{II}^{-4}, 3^{-1} *$
					$(4\mathbb{A}_1, 12\mathbb{A}_1) \subset 4\mathbb{D}_4$	18	$2_{II}^{-2}, 3^{-1} *$
					$(6\mathbb{A}_1, 6\mathbb{A}_1) \subset 12\mathbb{A}_1 o$	18	$2_{II}^{-2}, 4_2^{-2} *$

Table 2: Types and lattices S of degenerations of codimension ≥ 2 of Kählerian K3 surfaces with finite symplectic automorphism groups G = Clos(G) for $\mathbf{n} \geq 12$.

		$(6\mathbb{A}_1, 6\mathbb{A}_1) \subset 6\mathbb{A}_2 \ o$	18	$4_{II}^{-2}, 3^{+1} *$
		$(6\mathbb{A}_1, 12\mathbb{A}_1) \subset 6\mathbb{A}_3$	18	$4_6^{+2} *$
		$(\mathbb{A}_1, \mathbb{A}_1, \mathbb{A}_1) \subset 3\mathbb{A}_1 \ o$	19	$2_1^{+1}, 4_{II}^{+2}, 3^{+2} *$
		$(\mathbb{A}_1, \mathbb{A}_1, 4\mathbb{A}_1) \subset 6\mathbb{A}_1 \ o$	19	$2^{+2}_{2}, 8^{+1}_{7}, 3^{+2} *$
		$(\mathbb{A}_1, \mathbb{A}_1, 6\mathbb{A}_1) \subset 8\mathbb{A}_1 \ o$	19	$4_7^{-3}, 3^{+1} *$
		$(\mathbb{A}_1, \mathbb{A}_1, 12\mathbb{A}_1) \subset 14\mathbb{A}_1 o$	19	$2^{+2}_2, 8^{-1}_5, 3^{-1} *$
		$(\mathbb{A}_1, 3\mathbb{A}_1, 4\mathbb{A}_1) \subset 8\mathbb{A}_1 \ o$	19	$2_{II}^{-2}, 8_7^{+1}, 3^{-1} *$
		$(\mathbb{A}_1, 3\mathbb{A}_1, 12\mathbb{A}_1) \subset 16\mathbb{A}_1 \ o$	19	$2_{II}^{-2}, 8_5^{-1} *$
		$(\mathbb{A}_1, 4\mathbb{A}_1, 4\mathbb{A}_1) \subset 9\mathbb{A}_1 \ o$	19	$2_1^{+1}, 4_0^{+2}, 3^{+2} *$
		$(\mathbb{A}_1, 4\mathbb{A}_1, 4\mathbb{A}_1) \subset \mathbb{A}_1 \amalg 4\mathbb{A}_2$	19	$2^{-3}_7, 3^{+3} *$
		$(\mathbb{A}_1, 4\mathbb{A}_1, 6\mathbb{A}_1) \subset 11\mathbb{A}_1$	19	$2_3^{-1}, 4_7^{+1}, 8_5^{-1}, 3^{+1}$
		$(\mathbb{A}_1, 4\mathbb{A}_1, 12\mathbb{A}_1) \subset \mathbb{A}_1 \amalg 4\mathbb{D}_4$	19	$2^{-3}_7, 3^{-1} *$
		$(\mathbb{A}_1, 6\mathbb{A}_1, 6\mathbb{A}_1) \subset \mathbb{A}_1 \amalg 6\mathbb{A}_2 \ o$	19	$2_3^{-1}, 4_{II}^{-2}, 3^{+1} *$
		$(\mathbb{A}_1, 6\mathbb{A}_1, 12\mathbb{A}_1) \subset \mathbb{A}_1 \amalg 6\mathbb{A}_3$	19	$2_7^{+1}, 4_6^{+2}$
		$(3\mathbb{A}_1, 4\mathbb{A}_1, 4\mathbb{A}_1) \subset 11\mathbb{A}_1 o$	19	$2_1^{+1}, 4_2^{+2}, 3^{-1} *$
		$(3\mathbb{A}_1, 4\mathbb{A}_1, 4\mathbb{A}_1) \subset 3\mathbb{A}_1 \amalg 4\mathbb{A}_2$	19	$2^{+3}_5, 3^{-2} *$
		$(3\mathbb{A}_1, 4\mathbb{A}_1, 12\mathbb{A}_1) \subset 3\mathbb{A}_1 \amalg 4\mathbb{D}_4$	19	$2_5^{+3} *$
		$(3\mathbb{A}_1, 6\mathbb{A}_1, 4\mathbb{A}_1) \subset 3\mathbb{A}_3 \amalg 4\mathbb{A}_1$	19	$2_6^{+2}, 8_3^{-1}$
		$(4\mathbb{A}_1, 4\mathbb{A}_1, 4\mathbb{A}_1) \subset 12\mathbb{A}_1$	19	$8_1^{+1}, 3^{+2} *$
		$\left(\begin{array}{ccc} 4\mathbb{A}_1 & 4\mathbb{A}_2 & 8\mathbb{A}_1 \end{array}\right)$		
		$4\mathbb{A}_1 4\mathbb{A}_2 \subset 4\mathbb{A}_3 \ o$	19	$4_1^{+1}, 3^{+2} *$
		$ \langle 4\mathbb{A}_1 \rangle$		
		$(4\mathbb{A}_1, 4\mathbb{A}_1, 6\mathbb{A}_1) \subset 14\mathbb{A}_1 \ o$	19	$2^{-2}_2, 4^{+1}_1, 3^{+1} *$
		$(4\mathbb{A}_1, 4\mathbb{A}_1, 6\mathbb{A}_1) \subset 4\mathbb{A}_2 \amalg 6\mathbb{A}_1$	19	$4_1^{+1}, 3^{+2} *$
		$(4\mathbb{A}_1, 6\mathbb{A}_1, 6\mathbb{A}_1) \subset 16\mathbb{A}_1 \ o$	19	$2_{II}^{-2}, 8_5^{-1} *$
		$(4\mathbb{A}_1, 6\overline{\mathbb{A}_1, 6\mathbb{A}_1}) \subset 4\mathbb{A}_1 \amalg 6\mathbb{A}_2 o$	19	$8^{-1}_3, 3^{+1} *$

n	G	i	G	Deg	$\operatorname{rk} S$	q_S
18	12	4	D_{12}	$(\mathbb{A}_1, 2\mathbb{A}_1) \subset 3\mathbb{A}_1$	18	$2^{+3}_{7}, 4^{+1}_{7}, 3^{+4}_{7}$
				$(\mathbb{A}_1, 3\mathbb{A}_1) \subset 4\mathbb{A}_1$	18	$2_0^{+4}, 3^{-3} *$
				$(\mathbb{A}_1, 6\mathbb{A}_1) \subset 7\mathbb{A}_1$	18	$2_1^{-3}, 4_7^{+1}, 3^{+3} *$
				$(2\mathbb{A}_1, 3\mathbb{A}_1) \subset 5\mathbb{A}_1$	18	$2_1^{+3}, 4_7^{+1}, 3^{-3}$
				$((2\mathbb{A}_1, 6\mathbb{A}_1) \subset 8\mathbb{A}_1)_I$	18	$4_4^{-2}, 3^{+3} *$
				$\left(\left(2\mathbb{A}_{1},6\mathbb{A}_{1}\right)\subset8\mathbb{A}_{1}\right)_{II}$	18	$2_{II}^{-4}, 3^{+3}$
				$(2\mathbb{A}_1, 6\mathbb{A}_1) \subset 2\mathbb{D}_4$	18	$2_{II}^{-2}, 3^{+3} *$
				$(3\mathbb{A}_1, 6\mathbb{A}_1) \subset 9\mathbb{A}_1$	18	$2^{+3}_{7}, 4^{+1}_{7}, 3^{-2} *$
				$(3\mathbb{A}_1, 6\mathbb{A}_1) \subset 3\mathbb{A}_3$	18	$2_6^{-4}, 3^{+2} *$
				$(6\mathbb{A}_1, 6\mathbb{A}_1) \subset 12\mathbb{A}_1$	18	$4^{+2}_2, 3^{+2} *$
				$(6\mathbb{A}_1, 6\mathbb{A}_1) \subset 6\mathbb{A}_2$	18	$2_{II}^{-2}, 3^{-1}, 9^{-1} *$
				$(\mathbb{A}_1, 2\mathbb{A}_1, 3\mathbb{A}_1) \subset 6\mathbb{A}_1$	19	$2_0^{+2}, 4_7^{+1}, 3^{-3} *$
				$\begin{pmatrix} \mathbb{A}_1 & 3\mathbb{A}_1 & 7\mathbb{A}_1 \\ & 2\mathbb{A}_1 & (8\mathbb{A}_1)_I \\ & & 6\mathbb{A}_1 \end{pmatrix} \subset 9\mathbb{A}_1$	19	$2_1^{+1}, 4_2^{+2}, 3^{+3}$
				$\left(\begin{array}{ccc} \mathbb{A}_1 & 3\mathbb{A}_1 & 7\mathbb{A}_1 \\ & 2\mathbb{A}_1 & 2\mathbb{D}_4 \\ & & 6\mathbb{A}_1 \end{array}\right) \subset \mathbb{A}_1 \amalg 2\mathbb{D}_4$	19	$2^{-3}_{7}, 3^{+3} *$
				$(\mathbb{A}_1, 3\mathbb{A}_1, 6\mathbb{A}_1) \subset 10\mathbb{A}_1$	19	$2^{-2}_{2}, 4^{+1}_{7}, 3^{-2} *$
				$\left(\begin{array}{ccc} \mathbb{A}_1 & 4\mathbb{A}_1 & 7\mathbb{A}_1 \\ & 3\mathbb{A}_1 & 3\mathbb{A}_3 \\ & & 6\mathbb{A}_1 \end{array}\right) \subset \mathbb{A}_1 \amalg 3\mathbb{A}_3$	19	$2_1^{+3}, 3^{+2} *$
				$(\mathbb{A}_1, 6\mathbb{A}_1, 6\mathbb{A}_1) \subset 13\mathbb{A}_1$	19	$2^{+1}_7, 4^{+2}_2, 3^{+2} *$
				$(\mathbb{A}_1, 6\mathbb{A}_1, 6\mathbb{A}_1) \subset \mathbb{A}_1 \amalg 6\mathbb{A}_2$	19	$2^{+3}_3, 3^{-1}, 9^{-1} *$
				$\left(\begin{array}{ccc} 2\mathbb{A}_1 & 5\mathbb{A}_1 & (8\mathbb{A}_1)_I \\ & 3\mathbb{A}_1 & 9\mathbb{A}_1 \\ & & 6\mathbb{A}_1 \end{array}\right) \subset 11\mathbb{A}_1$	19	$2_7^{+1}, 4_6^{+2}, 3^{-2}$
				$\left \begin{pmatrix} 2\mathbb{A}_1 & 5\mathbb{A}_1 & (8\mathbb{A}_1)_I \\ & 3\mathbb{A}_1 & 3\mathbb{A}_3 \\ & & 6\mathbb{A}_1 \end{pmatrix} \subset 2\mathbb{A}_1 \amalg 3\mathbb{A}_3 \right $	19	$2^{+2}_{2}, 4^{+1}_{7}, 3^{+2} *$

				$\left(\begin{array}{ccc} 2\mathbb{A}_1 & 5\mathbb{A}_1 & (8\mathbb{A}_1)_{II} \\ 3\mathbb{A}_1 & 3\mathbb{A}_3 \\ & & 6\mathbb{A}_1 \end{array}\right) \subset 2\mathbb{A}_1 \amalg 3\mathbb{A}_3$	19	$2_{II}^{+2}, 4_1^{+1}, 3^{+2}$
				$\begin{pmatrix} 2\mathbb{A}_1 & 5\mathbb{A}_1 & 2\mathbb{D}_4 \\ & 3\mathbb{A}_1 & 9\mathbb{A}_1 \\ & & 6\mathbb{A}_1 \end{pmatrix} \subset 3\mathbb{A}_1 \amalg 2\mathbb{D}_4$	19	$2^{+3}_5, 3^{-2} *$
				$ \begin{pmatrix} 2\mathbb{A}_1 & (8\mathbb{A}_1)_I & (8\mathbb{A}_1)_{II} \\ & 6\mathbb{A}_1 & 12\mathbb{A}_1 \\ & & 6\mathbb{A}_1 \end{pmatrix} \subset 14\mathbb{A}_1 $	19	$2_{II}^{+2}, 4_1^{+1}, 3^{+2}$
				$ \begin{pmatrix} 2\mathbb{A}_1 & (8\mathbb{A}_1)_I & (8\mathbb{A}_1)_I \\ & 6\mathbb{A}_1 & 6\mathbb{A}_2 \\ & & 6\mathbb{A}_1 \end{pmatrix} \subset 2\mathbb{A}_1 \amalg 6\mathbb{A}_2 $	19	$4_3^{-1}, 3^{-1}, 9^{-1} *$
				$\begin{pmatrix} 2\mathbb{A}_1 & 2\mathbb{D}_4 & (8\mathbb{A}_1)_I \\ & 6\mathbb{A}_1 & 12\mathbb{A}_1 \\ & & 6\mathbb{A}_1 \end{pmatrix} \subset 2\mathbb{D}_4 \amalg 6\mathbb{A}_1$	19	$4_1^{+1}, 3^{+2} *$
				$(3\mathbb{A}_1, 6\mathbb{A}_1, 6\mathbb{A}_1) \subset 15\mathbb{A}_1$	19	$2_3^{-1}, 4_4^{-2}, 3^{-1} *$
				$(3\mathbb{A}_1, 6\mathbb{A}_1, 6\mathbb{A}_1) \subset 3\mathbb{A}_1 \amalg 6\mathbb{A}_2$	19	$2_1^{-3}, 9^{-1} *$
				$\left(\begin{array}{ccc} 3\mathbb{A}_1 & 3\mathbb{A}_3 & 9\mathbb{A}_1 \\ & 6\mathbb{A}_1 & 12\mathbb{A}_1 \\ & & 6\mathbb{A}_1 \end{array}\right) \subset 3\mathbb{A}_3 \amalg 6\mathbb{A}_1$	19	$2_6^{-2}, 4_5^{-1}, 3^{+1} *$
				$\begin{pmatrix} 3\mathbb{A}_1 & 3\mathbb{A}_3 & 9\mathbb{A}_1 \\ & 6\mathbb{A}_1 & 6\mathbb{A}_2 \\ & & 6\mathbb{A}_1 \end{pmatrix} \subset 3\mathbb{A}_5$	19	$2^{+3}_3, 3^{-1} *$
n	G	i	G	Deg	$\operatorname{rk} S$	q_S
21	16	14	C_2^4	$(4\mathbb{A}_1, 4\mathbb{A}_1) \subset 8\mathbb{A}_1$	17	$2_{II}^{+4}, 8_7^{+1} *$
				$(4\mathbb{A}_1, 4\mathbb{A}_1, 4\mathbb{A}_1) \subset 12\mathbb{A}_1 \ o$	18	$2_{II}^{-2}, 4_2^{-2} *$
				$(4\mathbb{A}_1, 4\mathbb{A}_1, 4\mathbb{A}_1, 4\mathbb{A}_1) \subset 16\mathbb{A}_1 \ o$	19	$2_{II}^{-2}, 8_5^{-1} *$

n	G	i	G	Deg	$\operatorname{rk} S$	q_S
22	16	11	$C_2 \times D_8$	$(2\mathbb{A}_1, 2\mathbb{A}_1) \subset 4\mathbb{A}_1 o$	18	$4_6^{+4} *$
				$(2\mathbb{A}_1, 4\mathbb{A}_1) \subset 6\mathbb{A}_1$	18	$4_7^{+3}, 8_7^{+1} *$
				$(2\mathbb{A}_1, 8\mathbb{A}_1) \subset 10\mathbb{A}_1$	18	4_{6}^{+4}
				$((4\mathbb{A}_1, 4\mathbb{A}_1) \subset 8\mathbb{A}_1)_I o$	18	$4_6^{+4} *$
				$((4\mathbb{A}_1, 4\mathbb{A}_1) \subset 8\mathbb{A}_1)_{II}$	18	$2_{II}^{-2}, 8_6^{-2} *$
				$(4\mathbb{A}_1, 8\mathbb{A}_1) \subset 12\mathbb{A}_1$	18	$2_{II}^{+2}, 4_7^{+1}, 8_7^{+1} *$
				$(4\mathbb{A}_1, 8\mathbb{A}_1) \subset 4\mathbb{A}_3$	18	$2_{II}^{-2}, 4_2^{-2} *$
				$(8\mathbb{A}_1, 8\mathbb{A}_1) \subset 16\mathbb{A}_1 \ o$	18	$2_{II}^{+2}, 4_6^{+2} *$
				$(2\mathbb{A}_1, 2\mathbb{A}_1, 4\mathbb{A}_1) \subset 8\mathbb{A}_1 \ o$	19	$4_6^{+2}, 8_7^{+1} *$
				$(2\mathbb{A}_1, 2\mathbb{A}_1, 8\mathbb{A}_1) \subset 12\mathbb{A}_1 \ o$	19	$4_5^{+3} *$
				$(2\mathbb{A}_1, (4\mathbb{A}_1, 4\mathbb{A}_1)_{II}) \subset 10\mathbb{A}_1$	19	$4_5^{-1}, 8_4^{-2} *$
				$(2\mathbb{A}_1, 4\mathbb{A}_1, 8\mathbb{A}_1) \subset 14\mathbb{A}_1$	19	$4_4^{-2}, 8_5^{-1}$
				$\begin{pmatrix} 2\mathbb{A}_1 & 6\mathbb{A}_1 & 10\mathbb{A}_1 \\ & 4\mathbb{A}_1 & 4\mathbb{A}_3 \\ & & 8\mathbb{A}_1 \end{pmatrix} \subset 2\mathbb{A}_1 \amalg 4\mathbb{A}_3$	19	$4_5^{+3} *$
				$((4\mathbb{A}_1, 4\mathbb{A}_1)_I, 8\mathbb{A}_1) \subset 16\mathbb{A}_1 \ o$	19	$4_5^{+3} *$
				$\begin{pmatrix} 4\mathbb{A}_1 & (8\mathbb{A}_1)_{II} & 12\mathbb{A}_1 \\ & 4\mathbb{A}_1 & 4\mathbb{A}_3 \\ & & 8\mathbb{A}_1 \end{pmatrix} \subset 4\mathbb{A}_1 \amalg 4\mathbb{A}_3$	19	$2_{II}^{-2}, 8_5^{-1} *$
30	18	4	$\mathfrak{A}_{3,3}$	$(3\mathbb{A}_1, 3\mathbb{A}_1) \subset 6\mathbb{A}_1$	18	$2^{+2}_2, 3^{+2}_2, 9^{-1} *$
				$(3\mathbb{A}_1, 9\mathbb{A}_1) \subset 12\mathbb{A}_1$	18	$2_0^{+3}, 3^{-3} *$
				$(3\mathbb{A}_1, 9\mathbb{A}_1) \subset 3\mathbb{D}_4$	18	3^{-3} *
				$(9\mathbb{A}_1, 9\mathbb{A}_1) \subset 9\mathbb{A}_2$	18	$3^{-3} *$
				$(3\mathbb{A}_1, 3\mathbb{A}_1, 3\mathbb{A}_1) \subset 9\mathbb{A}_1$	19	$2^{-3}_{7}, 3^{-1}, 9^{-1} *$
				$(3\mathbb{A}_1, 3\mathbb{A}_1, 9\mathbb{A}_1) \subset 15\mathbb{A}_1$	19	$2_1^{+3}, 3^{+2} *$
				$\left(\begin{array}{ccc} 3\mathbb{A}_1 & 6\mathbb{A}_1 & 12\mathbb{A}_1 \\ & 3\mathbb{A}_1 & 3\mathbb{D}_4 \\ & & 9\mathbb{A}_1 \end{array}\right) \subset 3\mathbb{A}_1 \amalg 3\mathbb{D}_4$	19	$2_1^{+1}, 3^{+2} *$

n	G	i	G	$\operatorname{rk} S_G$	Deg	$\operatorname{rk} S$	q_S
34	24	12	\mathfrak{S}_4	17	$(\mathbb{A}_1, \mathbb{A}_1) \subset 2\mathbb{A}_1 \ o$	19	$4_1^{+3}, 3^{+2} *$
					$(\mathbb{A}_1, 2\mathbb{A}_1) \subset 3\mathbb{A}_1 \ o$	19	$2_1^{+1}, 4_{II}^{+2}, 3^{+2} *$
					$(\mathbb{A}_1, 3\mathbb{A}_1) \subset 4\mathbb{A}_1 \ o$	19	$4_3^{-3}, 3^{-1} *$
					$(\mathbb{A}_1, 4\mathbb{A}_1) \subset 5\mathbb{A}_1$	19	$2_1^{+1}, 4_1^{+1}, 8_7^{+1}, 3^{+2} *$
					$(\mathbb{A}_1, (6\mathbb{A}_1)_I) \subset 7\mathbb{A}_1$	19	$2_1^{+1}, 4_6^{-2}, 3^{+1} *$
					$(\mathbb{A}_1, 8\mathbb{A}_1) \subset 9\mathbb{A}_1$	19	$2_1^{+1}, 4_0^{+2}, 3^{+2} *$
					$(\mathbb{A}_1, 12\mathbb{A}_1) \subset 13\mathbb{A}_1$	19	$2^{+1}_7, 4^{-1}_5, 8^{+1}_7, 3^{-1}_7$
					$(\mathbb{A}_1, 6\mathbb{A}_2) \subset \mathbb{A}_1 \amalg 6\mathbb{A}_2$	19	$2_7^{+1}, 4_{II}^{+2}, 3^{+1} *$
					$(2\mathbb{A}_1, 4\mathbb{A}_1) \subset 6\mathbb{A}_1$	19	$2^{+2}_2, 8^{+1}_7, 3^{+2} *$
					$(2\mathbb{A}_1, (6\mathbb{A}_1)_{II}) \subset 8\mathbb{A}_1$	19	$4^{-3}_{7}, 3^{+1} *$
					$(2\mathbb{A}_1, 12\mathbb{A}_1) \subset 14\mathbb{A}_1$	19	$2^{+2}_2, 8^{+1}_1, 3^{-1} *$
					$(3\mathbb{A}_1, 4\mathbb{A}_1) \subset 7\mathbb{A}_1$	19	$2_1^{+1}, 4_1^{+1}, 8_5^{-1}, 3^{-1} *$
					$(3\mathbb{A}_1, (6\mathbb{A}_1)_{II}) \subset 3\mathbb{A}_3$	19	$4_5^{+3} *$
					$(3\mathbb{A}_1, 8\mathbb{A}_1) \subset 11\mathbb{A}_1$	19	$2_1^{+1}, 4_2^{-2}, 3^{-1} *$
					$(3\mathbb{A}_1, 12\mathbb{A}_1) \subset 15\mathbb{A}_1$	19	$2^{+1}_7, 4^{+1}_7, 8^{+1}_7 *$
					$(4\mathbb{A}_1, 4\mathbb{A}_1) \subset 8\mathbb{A}_1 \ o$	19	$2_{II}^{+2}, 4_1^{+1}, 3^{+2} *$
					$(4\mathbb{A}_1, (6\mathbb{A}_1)_I) \subset 10\mathbb{A}_1$	19	$2^{+2}_6, 8^{+1}_1, 3^{+1} *$
					$(4\mathbb{A}_1, (6\mathbb{A}_1)_{II}) \subset 10\mathbb{A}_1$	19	$2_{II}^{+2}, 8_3^{-1}, 3^{+1}$
					$(4\mathbb{A}_1, 8\mathbb{A}_1) \subset 12\mathbb{A}_1 \ o$	19	$8_1^{+1}, 3^{+2} *$
					$(4\mathbb{A}_1, 8\mathbb{A}_1) \subset 4\mathbb{A}_3$	19	$4_1^{+1}, 3^{+2} *$
					$(4\mathbb{A}_1, 12\mathbb{A}_1) \subset 16\mathbb{A}_1 \ o$	19	$2_{II}^{+2}, 4_3^{-1}, 3^{-1} *$
					$(4\mathbb{A}_1, 12\mathbb{A}_1) \subset 4\mathbb{D}_4$	19	$4_3^{-1}, 3^{-1} *$
					$(4\mathbb{A}_1, 6\mathbb{A}_2) \subset 4\mathbb{A}_1 \amalg 6\mathbb{A}_2$	19	$8_3^{-1}, 3^{+1} *$
					$((6\mathbb{A}_1)_I, (6\mathbb{A}_1)_{II}) \subset 12\mathbb{A}_1 \ o$	19	$4_5^{+3} *$
					$((6\mathbb{A}_1)_I, 8\mathbb{A}_1) \subset 14\mathbb{A}_1$	19	$2_4^{-2}, 4_7^{+1}, 3^{+1} *$
					$((6\mathbb{A}_1)_I, 12\mathbb{A}_1) \subset 6\mathbb{A}_3$	19	$2_6^{-2}, 4_3^{-1} *$
39	32	27	2^4C_2	17	$(4\mathbb{A}_1, 4\mathbb{A}_1) \subset 8\mathbb{A}_1 \ o$	19	$4_4^{-2}, 8_5^{-1} *$
					$(4\mathbb{A}_1, 8\mathbb{A}_1) \subset 12\mathbb{A}_1 \ o$	19	$4_5^{+3} *$
					$(8\mathbb{A}_1, 8\mathbb{A}_1) \subset 16\mathbb{A}_1 \ o$	19	$2_{II}^{-2}, 8_5^{-1} *$
40	32	49	$Q_8 * Q_8$	17	$(8\mathbb{A}_1, 8\mathbb{A}_1) \subset 16\mathbb{A}_1 \ o$	19	$4_5^{+3} *$
49	48	50	2^4C_3	17	$(4\mathbb{A}_1, 4\mathbb{A}_1) \subset 8\mathbb{A}_1 \ o$	19	$\overline{2_{II}^{-2}, 8_7^{+1}, 3^{-1}} *$
					$(4\mathbb{A}_1, 12\mathbb{A}_1) \subset 16\mathbb{A}_1 \ o$	19	$2_{II}^{-2}, 8_5^{-1} *$

Table 3: Types and lattices S of degenerations of codimension ≥ 2 of Kählerian K3 surfaces with symplectic automorphism group D_8 .

n	G	i	G	$\operatorname{rk} S_G$	Deg	$\operatorname{rk} S$	q_S
10	8	3	D_8	15	$(\mathbb{A}_1, \mathbb{A}_1) \subset 2\mathbb{A}_1 \ o$	17	$4_7^{+5} *$
					$(\mathbb{A}_1, (2\mathbb{A}_1)_I) \subset 3\mathbb{A}_1$	17	$2^{+1}_7, 4^{+4}_0$
					$(\mathbb{A}_1, (2\mathbb{A}_1)_{II}) \subset \mathbb{A}_3$	17	$4_7^{+5} *$
					$(\mathbb{A}_1, 4\mathbb{A}_1) \subset 5\mathbb{A}_1$	17	$2^{+1}_7, 4^{+3}_1, 8^{+1}_7$
					$(\mathbb{A}_1, 8\mathbb{A}_1) \subset 9\mathbb{A}_1$	17	$2_1^{+1}, 4_6^{+4}$
					$(\mathbb{A}_1, 2\mathbb{A}_2) \subset \mathbb{A}_1 \amalg 2\mathbb{A}_2$	17	$2_7^{+1}, 4_{II}^{+4} *$
					$((2\mathbb{A}_1)_I, (2\mathbb{A}_1)_{II}) \subset 4\mathbb{A}_1$	17	$4_7^{+5} *$
					$((2\mathbb{A}_1)_I, 4\mathbb{A}_1) \subset 6\mathbb{A}_1)_I$	17	$2_6^{+2}, 4_0^{+2}, 8_1^{+1}$
					$((2\mathbb{A}_1)_I, 4\mathbb{A}_1) \subset 6\mathbb{A}_1)_{II}$	17	$2_6^{+2}, 4_{II}^{+2}, 8_1^{+1}$
					$((2\mathbb{A}_1)_{II}, 4\mathbb{A}_1) \subset 6\mathbb{A}_1$	17	$2_{II}^{+2}, 4_{II}^{+2}, 8_7^{+1}$
					$((2\mathbb{A}_1)_I, 4\mathbb{A}_1) \subset 2\mathbb{A}_3$	17	$2_0^{+2}, 4_7^{+3} *$
					$((2\mathbb{A}_1)_I, 8\mathbb{A}_1) \subset 10\mathbb{A}_1$	17	$2^{+2}_2, 4^{+3}_5 *$
					$((4\mathbb{A}_1, 4\mathbb{A}_1) \subset 8\mathbb{A}_1)_I$	17	$4_7^{+1}, 8_0^{+2} *$
					$((4\mathbb{A}_1, 4\mathbb{A}_1) \subset 8\mathbb{A}_1)_{II} o$	17	$2_{II}^{+2}, 4_7^{+3} *$
					$(4\mathbb{A}_1, 4\mathbb{A}_1) \subset 4\mathbb{A}_2$	17	$4_1^{-3}, 3^{+1} *$
					$(4\mathbb{A}_1, 8\mathbb{A}_1) \subset 12\mathbb{A}_1$	17	$4_6^{+2}, 8_1^{+1} *$
					$(4\mathbb{A}_1, 8\mathbb{A}_1) \subset 4\mathbb{A}_3$	17	$4_7^{+3} *$
					$(4\mathbb{A}_1, 2\mathbb{A}_2) \subset 4\mathbb{A}_1 \amalg 2\mathbb{A}_2$	17	$4_{II}^{-2}, 8_3^{-1} *$
					$(\mathbb{A}_1, \mathbb{A}_1, (2\mathbb{A}_1)_I) \subset 4\mathbb{A}_1 \ o$	18	$4_6^{+4} *$
					$(\mathbb{A}_1, \mathbb{A}_1, 4\mathbb{A}_1) \subset 6\mathbb{A}_1 \ o$	18	$4^{+3}_7, 8^{+1}_7 *$
					$(\mathbb{A}_1, \mathbb{A}_1, 8\mathbb{A}_1) \subset 10\mathbb{A}_1 \ o$	18	4_{6}^{+4}
					$(\mathbb{A}_1, (2\mathbb{A}_1)_{II}, (2\mathbb{A}_1)_I) \subset \mathbb{A}_3 \amalg 2\mathbb{A}_1$	18	$4_6^{+4} *$
					$\begin{pmatrix} \mathbb{A}_1 & 3\mathbb{A}_1 & 5\mathbb{A}_1 \\ & (2\mathbb{A}_1)_I & (6\mathbb{A}_1)_I \\ & & 4\mathbb{A}_1 \end{pmatrix} \subset 7\mathbb{A}_1$	18	$2_7^{+1}, 4_6^{+2}, 8_5^{-1}$
					$(\mathbb{A}_1, (2\mathbb{A}_1)_I, 4\mathbb{A}_1) \subset \mathbb{A}_1 \amalg 2\mathbb{A}_3$	18	$2^{+1}_7, 4^{+3}_7 *$
					$(\mathbb{A}_1, (2\mathbb{A}_1)_{II}, 4\mathbb{A}_1) \subset \mathbb{A}_3 \amalg 4\mathbb{A}_1$	18	$4_5^{+3}, 8_1^{+1}$
					$(\mathbb{A}_1, (2\mathbb{A}_1)_I, 8\mathbb{A}_1) \subset 11\mathbb{A}_1$	18	$2^{+1}_7, 4^{+3}_7 *$
					$\begin{pmatrix} \mathbb{A}_1 & 5\mathbb{A}_1 & 5\mathbb{A}_1 \\ & 4\mathbb{A}_1 & (8\mathbb{A}_1)_I \\ & & 4\mathbb{A}_1 \end{pmatrix} \subset 9\mathbb{A}_1$	18	$2_7^{+1}, 4_7^{+1}, 8_4^{-2}$
					$(\mathbb{A}_1, 4\mathbb{A}_1, 4\mathbb{A}_1) \subset \mathbb{A}_1 \amalg 4\mathbb{A}_2$	18	$2^{+1}_7, 4^{+3}_1, 3^{+1} *$

n	G	$\operatorname{rk} S_G$	Deg	$\operatorname{rk} S$	q_S
10	D_8	15	$(\mathbb{A}_1, 4\mathbb{A}_1, 8\mathbb{A}_1) \subset 13\mathbb{A}_1$	18	$2^{+1}_7, 4^{+2}_0, 8^{+1}_7$
			$(\mathbb{A}_1, 4\mathbb{A}_1, 8\mathbb{A}_1) \subset \mathbb{A}_1 \amalg 4\mathbb{A}_3$	18	$2_7^{+1}, 4_7^{+3}$
			$(\mathbb{A}_1, 4\mathbb{A}_1, 2\mathbb{A}_2) \subset 5\mathbb{A}_1 \amalg 2\mathbb{A}_2$	18	$2_3^{-1}, 4_{II}^{+2}, 8_3^{-1}$
			$\begin{pmatrix} (2\mathbb{A}_1)_I & 4\mathbb{A}_1 & (6\mathbb{A}_1)_I \\ & (2\mathbb{A}_1)_{II} & 6\mathbb{A}_1 \\ & & 4\mathbb{A}_1 \end{pmatrix} \subset 8\mathbb{A}_1$	18	$4_5^{+3}, 8_1^{+1}$
			$ \begin{pmatrix} (2\mathbb{A}_1)_I & 4\mathbb{A}_1 & (6\mathbb{A}_1)_{II} \\ (2\mathbb{A}_1)_{II} & 6\mathbb{A}_1 \\ & 4\mathbb{A}_1 \end{pmatrix} \subset 8\mathbb{A}_1 $	18	$4_7^{+3}, 8_7^{+1} *$
			$\begin{pmatrix} (2\mathbb{A}_1)_{II} & 4\mathbb{A}_1 & 6\mathbb{A}_1 \\ & (2\mathbb{A}_1)_I & 2\mathbb{A}_3 \\ & & 4\mathbb{A}_1 \end{pmatrix} \subset 2\mathbb{A}_1 \amalg 2\mathbb{A}_3$	18	$4_6^{+4} *$
			$ \begin{pmatrix} (2\mathbb{A}_1)_I & (6\mathbb{A}_1)_I & (6\mathbb{A}_1)_{II} \\ & 4\mathbb{A}_1 & (8\mathbb{A}_1)_I \\ & & 4\mathbb{A}_1 \end{pmatrix} \subset 10\mathbb{A}_1 $	18	$2_6^{+2}, 8_0^{+2}$
			$\begin{pmatrix} (2\mathbb{A}_1)_I & (6\mathbb{A}_1)_I & (6\mathbb{A}_1)_I \\ & 4\mathbb{A}_1 & (8\mathbb{A}_1)_{II} \\ & & 4\mathbb{A}_1 \end{pmatrix} \subset 10\mathbb{A}_1 \ o$	18	4_{6}^{+4}
			$\begin{pmatrix} (2\mathbb{A}_1)_{II} & 6\mathbb{A}_1 & 6\mathbb{A}_1 \\ & 4\mathbb{A}_1 & (8\mathbb{A}_1)_I \\ & & 4\mathbb{A}_1 \end{pmatrix} \subset 10\mathbb{A}_1$	18	$2_{II}^{+2}, 8_6^{+2}$
			$ \begin{pmatrix} (2\mathbb{A}_1)_{II} & 6\mathbb{A}_1 & 6\mathbb{A}_1 \\ & 4\mathbb{A}_1 & (8\mathbb{A}_1)_{II} \\ & & 4\mathbb{A}_1 \end{pmatrix} \subset 10\mathbb{A}_1 \ o $	18	4_{6}^{+4}
			$\begin{pmatrix} (2\mathbb{A}_1)_I & (6\mathbb{A}_1)_I & (6\mathbb{A}_1)_I \\ & 4\mathbb{A}_1 & 4\mathbb{A}_2 \\ & & 4\mathbb{A}_1 \end{pmatrix} \subset 2\mathbb{A}_1 \amalg 4\mathbb{A}_2$	18	$2_2^{+2}, 4_6^{+2}, 3^{+1} *$
			$\begin{pmatrix} (2\mathbb{A}_1)_{II} & 6\mathbb{A}_1 & 6\mathbb{A}_1 \\ & 4\mathbb{A}_1 & 4\mathbb{A}_2 \\ & & 4\mathbb{A}_1 \end{pmatrix} \subset 2\mathbb{A}_1 \amalg 4\mathbb{A}_2$	18	$2_{II}^{+2}, 4_{II}^{-2}, 3^{+1}$
			$\begin{pmatrix} (2\mathbb{A}_1)_I & 2\mathbb{A}_3 & (6\mathbb{A}_1)_I \\ & 4\mathbb{A}_1 & (8\mathbb{A}_1)_I \\ & & 4\mathbb{A}_1 \end{pmatrix} \subset 2\mathbb{A}_3 \amalg 4\mathbb{A}_1$	18	$2_0^{+2}, 4_7^{+1}, 8_3^{-1}$
			$\begin{pmatrix} (2\mathbb{A}_1)_I & 2\mathbb{A}_3 & (6\mathbb{A}_1)_{II} \\ & 4\mathbb{A}_1 & 4\mathbb{A}_2 \\ & & 4\mathbb{A}_1 \end{pmatrix} \subset 2\mathbb{A}_5$	18	$2_2^{-2}, 4_{II}^{+2} *$

n	G	$\operatorname{rk} S_G$	Deg	$\operatorname{rk} S$	q_S
10	D_8	15	$ \begin{pmatrix} (2\mathbb{A}_1)_I & (6\mathbb{A}_1)_I & 10\mathbb{A}_1 \\ & 4\mathbb{A}_1 & 12\mathbb{A}_1 \\ & & 8\mathbb{A}_1 \end{pmatrix} \subset 14\mathbb{A}_1 $	18	$2^{-2}_{2}, 4^{+1}_{1}, 8^{-1}_{3} *$
			$ \left(\begin{array}{cccc} (2\mathbb{A}_1)_I & (6\mathbb{A}_1)_I & 10\mathbb{A}_1\\ & 4\mathbb{A}_1 & 4\mathbb{A}_3\\ & & 8\mathbb{A}_1 \end{array}\right) \subset 2\mathbb{A}_1 \text{ II } 4\mathbb{A}_3 $	18	$2^{-2}_2, 4^{+2}_0$
			$\begin{pmatrix} (2\mathbb{A}_1)_I & (6\mathbb{A}_1)_{II} & 10\mathbb{A}_1 \\ & 4\mathbb{A}_1 & 4\mathbb{A}_3 \\ & & 8\mathbb{A}_1 \end{pmatrix} \subset 2\mathbb{A}_1 \amalg 4\mathbb{A}_3$	18	$2^{-2}_{2}, 4^{-2}_{II} *$
			$((2\mathbb{A}_1)_I, 4\mathbb{A}_1, 8\mathbb{A}_1) \subset 2\mathbb{A}_3 \amalg 8\mathbb{A}_1$	18	$2_4^{-2}, 4_6^{-2} *$
			$\begin{pmatrix} 4\mathbb{A}_1 & (8\mathbb{A}_1)_I & (8\mathbb{A}_1)_{II} \\ & 4\mathbb{A}_1 & (8\mathbb{A}_1)_I \\ & & 4\mathbb{A}_1 \end{pmatrix} \subset 12\mathbb{A}_1 \ o$	18	$2_{II}^{-2}, 4_1^{+1}, 8_5^{-1} *$
			$\begin{pmatrix} 4\mathbb{A}_1 & (8\mathbb{A}_1)_I & (8\mathbb{A}_1)_I \\ & 4\mathbb{A}_1 & 4\mathbb{A}_2 \\ & & 4\mathbb{A}_1 \end{pmatrix} \subset 4\mathbb{A}_1 \amalg 4\mathbb{A}_2$	18	$4_7^{+1}, 8_5^{-1}, 3^{+1} *$
			$\begin{pmatrix} 4\mathbb{A}_1 & 4\mathbb{A}_2 & (8\mathbb{A}_1)_{II} \\ & 4\mathbb{A}_1 & 4\mathbb{A}_2 \\ & & 4\mathbb{A}_1 \end{pmatrix} \subset 4\mathbb{A}_3 \ o$	18	$2_{II}^{-2}, 4_2^{-2} *$
			$\begin{pmatrix} 4\mathbb{A}_1 & (8\mathbb{A}_1)_{II} & 12\mathbb{A}_1 \\ & 4\mathbb{A}_1 & 12\mathbb{A}_1 \\ & & 8\mathbb{A}_1 \end{pmatrix} \subset 16\mathbb{A}_1 \ o$	18	$2_{II}^{+2}, 4_6^{+2} *$
			$\begin{pmatrix} 4\mathbb{A}_1 & (8\mathbb{A}_1)_I & 12\mathbb{A}_1 \\ & 4\mathbb{A}_1 & 4\mathbb{A}_3 \\ & & 8\mathbb{A}_1 \end{pmatrix} \subset 4\mathbb{A}_1 \amalg 4\mathbb{A}_3$	18	$4_5^{-1}, 8_5^{-1} *$
			$\begin{pmatrix} 4\mathbb{A}_1 & 4\mathbb{A}_2 & 12\mathbb{A}_1 \\ & 4\mathbb{A}_1 & 4\mathbb{A}_3 \\ & & 8\mathbb{A}_1 \end{pmatrix} \subset 4\mathbb{D}_4$	18	$4_6^{+2} *$
			$(4\mathbb{A}_1, 4\mathbb{A}_1, 2\mathbb{A}_2) \subset (8\mathbb{A}_1)_I \amalg 2\mathbb{A}_2$	18	$8_6^{+2} *$
			$(4\mathbb{A}_1, 4\mathbb{A}_1, 2\mathbb{A}_2) \subset 4\mathbb{A}_2 \amalg 2\mathbb{A}_2$	18	$4_{II}^{-2}, 3^{+1} *$

n	G	Deg	$\operatorname{rk} S$	q_S
10	D_8	$\begin{pmatrix} \mathbb{A}_1 & 2\mathbb{A}_1 & 3\mathbb{A}_1 & 5\mathbb{A}_1 \\ \mathbb{A}_1 & 3\mathbb{A}_1 & 5\mathbb{A}_1 \\ & (2\mathbb{A}_1)_I & (6\mathbb{A}_1)_I \\ & & 4\mathbb{A}_1 \end{pmatrix} \subset 8\mathbb{A}_1 \ o$	19	$4_4^{-2}, 8_5^{-1} *$
		$ \begin{pmatrix} \mathbb{A}_{1} & 2\mathbb{A}_{1} & 5\mathbb{A}_{1} & 5\mathbb{A}_{1} \\ \mathbb{A}_{1} & 5\mathbb{A}_{1} & 5\mathbb{A}_{1} \\ \mathbb{A}_{1} & 4\mathbb{A}_{1} & (8\mathbb{A}_{1})_{I} \\ \mathbb{A}_{1} & \mathbb{A}_{1} \end{pmatrix} \subset 10\mathbb{A}_{1} o $	19	$4_5^{-1}, 8_4^{-2} *$
		$(\mathbb{A}_1, \mathbb{A}_1, (2\mathbb{A}_1)_I, 8\mathbb{A}_1) \subset 12\mathbb{A}_1 \ o$	19	$4_5^{+3} *$
		$(\mathbb{A}_1, \mathbb{A}_1, 4\mathbb{A}_1, 8\mathbb{A}_1) \subset 14\mathbb{A}_1 \ o$	19	$4_4^{-2}, 8_5^{-1}$
		$(\mathbb{A}_1, \mathbb{A}_1, 4\mathbb{A}_1, 8\mathbb{A}_1) \subset 2\mathbb{A}_1 \amalg 4\mathbb{A}_3 \ o$	19	$4_5^{+3} *$
		$\begin{pmatrix} \mathbb{A}_1 & \mathbb{A}_3 & 3\mathbb{A}_1 & 5\mathbb{A}_1 \\ (2\mathbb{A}_1)_{II} & 4\mathbb{A}_1 & 8\mathbb{A}_1 \\ & (2\mathbb{A}_1)_I & (6\mathbb{A}_1)_I \\ & & 4\mathbb{A}_1 \end{pmatrix} \subset \mathbb{A}_3 \amalg 6\mathbb{A}_1$	19	$4_4^{-2}, 8_5^{-1}$
		$\begin{pmatrix} \mathbb{A}_1 & \mathbb{A}_3 & 3\mathbb{A}_1 & 5\mathbb{A}_1 \\ (2\mathbb{A}_1)_{II} & 4\mathbb{A}_1 & 6\mathbb{A}_1 \\ & (2\mathbb{A}_1)_I & 2\mathbb{A}_3 \\ & & 4\mathbb{A}_1 \end{pmatrix} \subset 3\mathbb{A}_3 \ o$	19	$4_5^{+3} *$
		$ \begin{pmatrix} \mathbb{A}_{1} & 3\mathbb{A}_{1} & 5\mathbb{A}_{1} & 5\mathbb{A}_{1} \\ (2\mathbb{A}_{1})_{I} & 2\mathbb{A}_{3} & (6\mathbb{A}_{1})_{I} \\ - & 4\mathbb{A}_{1} & (8\mathbb{A}_{1})_{I} \\ - & - & 4\mathbb{A}_{1} \end{pmatrix} \subset \mathbb{A}_{1} \amalg 2\mathbb{A}_{3} \amalg 4\mathbb{A}_{1} $	19	$2_3^{-1}, 4_5^{-1}, 8_1^{+1} *$
		$ \begin{pmatrix} \mathbb{A}_{1} & \mathbb{A}_{3} & 5\mathbb{A}_{1} & 5\mathbb{A}_{1} \\ (2\mathbb{A}_{1})_{II} & 6\mathbb{A}_{1} & 6\mathbb{A}_{1} \\ 4\mathbb{A}_{1} & (8\mathbb{A}_{1})_{I} \\ - & 4\mathbb{A}_{1} \end{pmatrix} \subset \mathbb{A}_{3} \amalg 8\mathbb{A}_{1} $	19	$4_7^{+1}, 8_6^{+2}$
		$\begin{pmatrix} \mathbb{A}_1 & 3\mathbb{A}_1 & 5\mathbb{A}_1 & 5\mathbb{A}_1 \\ (2\mathbb{A}_1)_I & (6\mathbb{A}_1)_I & (6\mathbb{A}_1)_I \\ & 4\mathbb{A}_1 & 4\mathbb{A}_2 \\ & & 4\mathbb{A}_1 \end{pmatrix} \subset 3\mathbb{A}_1 \amalg 4\mathbb{A}_2$	19	$2_3^{-1}, 4_0^{+2}, 3^{+1} *$
		$(\mathbb{A}_1, \overline{(2\mathbb{A}_1)_{II}}, 4\mathbb{A}_1, 4\mathbb{A}_1) \subset \mathbb{A}_3 \amalg 4\mathbb{A}_2$	19	$4_7^{-3}, 3^{+1} *$
		$\begin{pmatrix} \mathbb{A}_1 & 3\mathbb{A}_1 & 5\mathbb{A}_1 & 9\mathbb{A}_1 \\ (2\mathbb{A}_1)_I & (6\mathbb{A}_1)_I & 10\mathbb{A}_1 \\ & 4\mathbb{A}_1 & 12\mathbb{A}_1 \\ & & 8\mathbb{A}_1 \end{pmatrix} \subset 15\mathbb{A}_1 o$	19	$2_1^{+1}, 4_5^{-1}, 8_3^{-1} *$

n	G	Deg	$\operatorname{rk} S$	q_S
10	D_8	$(\mathbb{A}_1, (2\mathbb{A}_1)_I, 4\mathbb{A}_1, 8\mathbb{A}_1) \subset \mathbb{A}_1 \amalg 2\mathbb{A}_3, \amalg 8\mathbb{A}_1$	19	$2_3^{-1}, 4_6^{-2} *$
		$\begin{pmatrix} \mathbb{A}_1 & 3\mathbb{A}_1 & 5\mathbb{A}_1 & 9\mathbb{A}_1 \\ (2\mathbb{A}_1)_I & (6\mathbb{A}_1)_I & 10\mathbb{A}_1 \\ & 4\mathbb{A}_1 & 4\mathbb{A}_3 \\ & & 8\mathbb{A}_1 \end{pmatrix} \subset 3\mathbb{A}_1 \amalg 4\mathbb{A}_3$	19	$2_5^{-1}, 4_4^{-2}$
		$ \begin{pmatrix} \mathbb{A}_{1} & 5\mathbb{A}_{1} & 5\mathbb{A}_{1} & 5\mathbb{A}_{1} \\ 4\mathbb{A}_{1} & (8\mathbb{A}_{1})_{I} & (8\mathbb{A}_{1})_{I} \\ -4\mathbb{A}_{1} & 4\mathbb{A}_{2} \\ -4\mathbb{A}_{1} & 4\mathbb{A}_{1} \end{pmatrix} \subset 5\mathbb{A}_{1} \amalg 4\mathbb{A}_{2} $	19	$2_1^{+1}, 4_7^{+1}, 8_3^{-1}, 3^{+1}$
		$\begin{pmatrix} \mathbb{A}_1 & 5\mathbb{A}_1 & 5\mathbb{A}_1 & 9\mathbb{A}_1 \\ & 4\mathbb{A}_1 & (8\mathbb{A}_1)_I & 12\mathbb{A}_1 \\ & & 4\mathbb{A}_1 & 4\mathbb{A}_3 \\ & & & 8\mathbb{A}_1 \end{pmatrix} \subset 5\mathbb{A}_1 \amalg 4\mathbb{A}_3$	19	$2_7^{+1}, 4_5^{-1}, 8_5^{-1} *$
		$\begin{pmatrix} \mathbb{A}_1 & 5\mathbb{A}_1 & 5\mathbb{A}_1 & 9\mathbb{A}_1 \\ & 4\mathbb{A}_1 & 4\mathbb{A}_2 & 12\mathbb{A}_1 \\ & & 4\mathbb{A}_1 & 4\mathbb{A}_3 \\ & & & 8\mathbb{A}_1 \end{pmatrix} \subset \mathbb{A}_1 \amalg 4\mathbb{D}_4$	19	$2^{+1}_7, 4^{+2}_6$
		$\begin{pmatrix} \mathbb{A}_1 & 5\mathbb{A}_1 & 5\mathbb{A}_1 & \mathbb{A}_1 \amalg 2\mathbb{A}_2 \\ 4\mathbb{A}_1 & (8\mathbb{A}_1)_I & 4\mathbb{A}_1 \amalg 2\mathbb{A}_2 \\ 4\mathbb{A}_1 & 4\mathbb{A}_1 \amalg 2\mathbb{A}_2 \\ 2\mathbb{A}_2 \end{pmatrix} \subset 9\mathbb{A}_1 \amalg 2\mathbb{A}_2$	19	$2^{+1}_7, 8^{+2}_6$
		$(\mathbb{A}_1, 4\mathbb{A}_1, 4\mathbb{A}_1, 2\mathbb{A}_2) \subset \mathbb{A}_1 \amalg 6\mathbb{A}_2 \ o$	19	$2_7^{+1}, 4_{II}^{+2}, 3^{+1} *$
		$\begin{pmatrix} (2\mathbb{A}_1)_I & 4\mathbb{A}_1 & (6\mathbb{A}_1)_I & (6\mathbb{A}_1)_{II} \\ (2\mathbb{A}_1)_{II} & 6\mathbb{A}_1 & 6\mathbb{A}_1 \\ & & 4\mathbb{A}_1 & (8\mathbb{A}_1)_I \\ & & & & 4\mathbb{A}_1 \end{pmatrix} \subset 12\mathbb{A}_1$	19	$4_7^{+1}, 8_6^{+2}$
		$\begin{pmatrix} (2\mathbb{A}_1)_I & 4\mathbb{A}_1 & (6\mathbb{A}_1)_I & (6\mathbb{A}_1)_I \\ (2\mathbb{A}_1)_{II} & 6\mathbb{A}_1 & 6\mathbb{A}_1 \\ & & 4\mathbb{A}_1 & (8\mathbb{A}_1)_{II} \\ & & & 4\mathbb{A}_1 \end{pmatrix} \subset 12\mathbb{A}_1 \ o$	19	4_5^{+3} *
		$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	$4_7^{-3}, 3^{+1} *$

n	G	Deg	$\operatorname{rk} S$	q_S
10	D_8	$\begin{pmatrix} (2\mathbb{A}_1)_{II} & 6\mathbb{A}_1 & 4\mathbb{A}_1 & 6\mathbb{A}_1 \\ & 4\mathbb{A}_1 & (6\mathbb{A}_1)_I & (8\mathbb{A}_1)_I \\ & & (2\mathbb{A}_1)_I & 2\mathbb{A}_3 \\ & & & 4\mathbb{A}_1 \end{pmatrix} \subset 6\mathbb{A}_1 \amalg 2\mathbb{A}_3$	19	$4_6^{+2}, 8_7^{+1}$
		$ \begin{pmatrix} (2\mathbb{A}_1)_{II} & 4\mathbb{A}_1 & 6\mathbb{A}_1 & 6\mathbb{A}_1 \\ (2\mathbb{A}_1)_I & 2\mathbb{A}_3 & (6\mathbb{A}_1)_{II} \\ 4\mathbb{A}_1 & 4\mathbb{A}_2 \\ 4\mathbb{A}_1 & 4\mathbb{A}_1 \end{pmatrix} \subset 2\mathbb{A}_1 \amalg 2\mathbb{A}_5 $	19	$4_5^{+3} *$
		$\begin{pmatrix} (2\mathbb{A}_{1})_{I} & (6\mathbb{A}_{1})_{II} & (6\mathbb{A}_{1})_{I} & (6\mathbb{A}_{1})_{I} \\ 4\mathbb{A}_{1} & (8\mathbb{A}_{1})_{I} & (8\mathbb{A}_{1})_{I} \\ & 4\mathbb{A}_{1} & (8\mathbb{A}_{1})_{II} \\ & & 4\mathbb{A}_{1} \end{pmatrix} \subset 14\mathbb{A}_{1} \ o$	19	$4_6^{+2}, 8_7^{+1}$
		$\begin{pmatrix} (2\mathbb{A}_{1})_{II} & 6\mathbb{A}_{1} & 6\mathbb{A}_{1} & 6\mathbb{A}_{1} \\ & 4\mathbb{A}_{1} & (8\mathbb{A}_{1})_{I} & (8\mathbb{A}_{1})_{I} \\ & & 4\mathbb{A}_{1} & (8\mathbb{A}_{1})_{II} \\ & & & 4\mathbb{A}_{1} \end{pmatrix} \subset 14\mathbb{A}_{1} \ o$	19	$4_4^{-2}, 8_5^{-1}$
		$\begin{pmatrix} (2\mathbb{A}_{1})_{I} & (6\mathbb{A}_{1})_{II} & (6\mathbb{A}_{1})_{I} & (6\mathbb{A}_{1})_{I} \\ & 4\mathbb{A}_{1} & (8\mathbb{A}_{1})_{I} & (8\mathbb{A}_{1})_{I} \\ & & 4\mathbb{A}_{1} & 4\mathbb{A}_{2} \\ & & & 4\mathbb{A}_{1} \end{pmatrix} \subset 6\mathbb{A}_{1} \amalg 4\mathbb{A}_{2}$	19	$2^{-2}_2, 8^{+1}_1, 3^{+1} *$
		$\begin{pmatrix} (2\mathbb{A}_1)_{II} & 6\mathbb{A}_1 & 6\mathbb{A}_1 & 6\mathbb{A}_1 \\ & 4\mathbb{A}_1 & (8\mathbb{A}_1)_I & (8\mathbb{A}_1)_I \\ & & 4\mathbb{A}_1 & 4\mathbb{A}_2 \\ & & & & 4\mathbb{A}_1 \end{pmatrix} \subset 6\mathbb{A}_1 \amalg 4\mathbb{A}_2$	19	$2_{II}^{+2}, 8_3^{-1}, 3^{+1}$
		$\begin{pmatrix} (2\mathbb{A}_{1})_{I} & (6\mathbb{A}_{1})_{I} & (6\mathbb{A}_{1})_{I} \\ 4\mathbb{A}_{1} & 4\mathbb{A}_{2} & (8\mathbb{A}_{1})_{II} \\ 4\mathbb{A}_{1} & 4\mathbb{A}_{2} \\ 4\mathbb{A}_{1} & 4\mathbb{A}_{2} \end{pmatrix} \subset 2\mathbb{A}_{1} \amalg 4\mathbb{A}_{3} o$	19	$4_5^{+3} *$
		$\begin{pmatrix} (2\overline{\mathbb{A}}_1)_{II} & 6\overline{\mathbb{A}}_1 & 6\overline{\mathbb{A}}_1 & 6\overline{\mathbb{A}}_1 \\ & 4\overline{\mathbb{A}}_1 & 4\overline{\mathbb{A}}_2 & (8\overline{\mathbb{A}}_1)_{II} \\ & & 4\overline{\mathbb{A}}_1 & 4\overline{\mathbb{A}}_2 \\ & & & & 4\overline{\mathbb{A}}_1 \end{pmatrix} \subset 2\mathbb{A}_1 \amalg 4\mathbb{A}_3 \ o$	19	$4_5^{+3} *$
		$ \begin{pmatrix} (2\mathbb{A}_1)_I & 2\mathbb{A}_3 & (6\mathbb{A}_1)_I & (6\mathbb{A}_1)_I \\ & 4\mathbb{A}_1 & (8\mathbb{A}_1)_I & (8\mathbb{A}_1)_I \\ & & 4\mathbb{A}_1 & 4\mathbb{A}_2 \\ & & & & 4\mathbb{A}_1 \end{pmatrix} \subset 2\mathbb{A}_3 \amalg 4\mathbb{A}_2 $	19	$2_0^{+2}, 4_7^{+1}, 3^{+1} *$

n	G	Deg	$\operatorname{rk} S$	q_S
10	D_8	$\begin{pmatrix} 4\mathbb{A}_{1} & (6\mathbb{A}_{1})_{I} & (8\mathbb{A}_{1})_{I} & (8\mathbb{A}_{1})_{I} \\ (2\mathbb{A}_{1})_{I} & 2\mathbb{A}_{3} & (6\mathbb{A}_{1})_{II} \\ 4\mathbb{A}_{1} & 4\mathbb{A}_{2} \\ & & 4\mathbb{A}_{1} \end{pmatrix} \subset 4\mathbb{A}_{1} \amalg 2\mathbb{A}_{5}$	19	$2_6^{+2}, 8_7^{+1}$
		$ \begin{pmatrix} (2\mathbb{A}_{1})_{I} & (6\mathbb{A}_{1})_{I} & (6\mathbb{A}_{1})_{II} & 10\mathbb{A}_{1} \\ 4\mathbb{A}_{1} & (8\mathbb{A}_{1})_{I} & 12\mathbb{A}_{1} \\ 4\mathbb{A}_{1} & 4\mathbb{A}_{3} \\ 8\mathbb{A}_{1} \end{pmatrix} \subset 6\mathbb{A}_{1} \amalg 4\mathbb{A}_{3} $	19	$2^{-2}_2, 8^{-1}_3 *$
		$\begin{pmatrix} (2\mathbb{A}_{1})_{I} & 2\mathbb{A}_{3} & (6\mathbb{A}_{1})_{I} & 10\mathbb{A}_{1} \\ & 4\mathbb{A}_{1} & (8\mathbb{A}_{1})_{I} & 12\mathbb{A}_{1} \\ & & 4\mathbb{A}_{1} & 4\mathbb{A}_{3} \\ & & & 8\mathbb{A}_{1} \end{pmatrix} \subset 6\mathbb{A}_{3} o$	19	$2_4^{-2}, 4_5^{-1} *$
		$\begin{pmatrix} (2\mathbb{A}_{1})_{I} & (6\mathbb{A}_{1})_{I} & (6\mathbb{A}_{1})_{I} & 10\mathbb{A}_{1} \\ & 4\mathbb{A}_{1} & 4\mathbb{A}_{2} & 12\mathbb{A}_{1} \\ & & 4\mathbb{A}_{1} & 4\mathbb{A}_{3} \\ & & & 8\mathbb{A}_{1} \end{pmatrix} \subset 2\mathbb{A}_{1} \amalg 4\mathbb{D}_{4}$	19	$2_6^{+2}, 4_7^{+1} *$
		$\begin{pmatrix} 4\mathbb{A}_{1} & (8\mathbb{A}_{1})_{II} & (8\mathbb{A}_{1})_{I} & (8\mathbb{A}_{1})_{I} \\ & 4\mathbb{A}_{1} & (8\mathbb{A}_{1})_{I} & (8\mathbb{A}_{1})_{I} \\ & & 4\mathbb{A}_{1} & (8\mathbb{A}_{1})_{II} \\ & & & 4\mathbb{A}_{1} \end{pmatrix} \subset 16\mathbb{A}_{1} \ o$	19	$4_5^{+3} *$
		$\begin{pmatrix} 4\mathbb{A}_1 & (8\mathbb{A}_1)_I & (8\mathbb{A}_1)_I & (8\mathbb{A}_1)_I \\ 4\mathbb{A}_1 & 4\mathbb{A}_2 & (8\mathbb{A}_1)_{II} \\ 4\mathbb{A}_1 & 4\mathbb{A}_2 \\ & & 4\mathbb{A}_1 \end{pmatrix} \subset 4\mathbb{A}_1 \amalg 4\mathbb{A}_3 o$	19	$2_{II}^{-2}, 8_5^{-1} *$
		$\begin{pmatrix} 4\mathbb{A}_1 & 4\mathbb{A}_2 & (8\mathbb{A}_1)_I & (8\mathbb{A}_1)_I \\ & 4\mathbb{A}_1 & (8\mathbb{A}_1)_I & (8\mathbb{A}_1)_I \\ & & 4\mathbb{A}_1 & 4\mathbb{A}_2 \\ & & & & 4\mathbb{A}_1 \end{pmatrix} \subset 8\mathbb{A}_2$	19	$4_1^{+1}, 3^{+2} *$
		$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	$8^{-1}_3, 3^{+1} *$

			1 0 1 2		
n	G	G	Deg	$\operatorname{rk} S$	q_S
9	8	$(C_2)^3$	$((2\mathbb{A}_1, 2\mathbb{A}_1) \subset 4\mathbb{A}_1)_I$	16	$2_{II}^{+2}, 4_0^{+4} *$
			$((2\mathbb{A}_1, 2\mathbb{A}_1) \subset 4\mathbb{A}_1)_{II} o$	16	$2_{II}^{+4}, 4_{II}^{+2} *$
			$(2\mathbb{A}_1, 4\mathbb{A}_1) \subset 6\mathbb{A}_1$	16	$2_{II}^{+4}, 4_7^{+1}, 8_1^{+1} *$
			$(2\mathbb{A}_1, 4\mathbb{A}_1) \subset 2\mathbb{A}_3$	16	$2_{II}^{+4}, 4_{II}^{+2} *$
			$(2\mathbb{A}_1, 8\mathbb{A}_1) \subset 10\mathbb{A}_1$	16	$2_{II}^{-4}, 4_4^{-2} *$
			$(4\mathbb{A}_1, 4\mathbb{A}_1) \subset 8\mathbb{A}_1$	16	$2_{II}^{+4}, 4_{II}^{+2}$
			$(4\mathbb{A}_1, 8\mathbb{A}_1) \subset 4\mathbb{A}_3$	16	$2_{II}^{+6} *$
			$(8\mathbb{A}_1, 8\mathbb{A}_1) \subset 16\mathbb{A}_1 \ o$	16	$2_{II}^{+6} *$
			$\left(\begin{array}{ccc} 2\mathbb{A}_1 & (4\mathbb{A}_1)_I & (4\mathbb{A}_1)_I \end{array}\right)$		
			$2\mathbb{A}_1 (4\mathbb{A}_1)_I \subset 6\mathbb{A}_1$	17	$4_7^{+5} *$
			$(2A_1)$		
			$((2\mathbb{A}_1, 2\mathbb{A}_1)_I, 4\mathbb{A}_1) \subset 8\mathbb{A}_1$	17	$2_{II}^{+2}, 4_6^{+2}, 8_1^{+1} *$
			$((2\mathbb{A}_1, 2\mathbb{A}_1)_{II}, 4\mathbb{A}_1) \subset 8\mathbb{A}_1 \ o$	17	$2_{II}^{+4}, 8_7^{+1} *$
			$\begin{pmatrix} 2\mathbb{A}_1 & (4\mathbb{A}_1)_I & 6\mathbb{A}_1 \\ & & & & \end{pmatrix}$		2^{+2} 4^{+3}
			$2\mathbb{A}_1 2\mathbb{A}_3 \subset 2\mathbb{A}_1 \amalg 2\mathbb{A}_3$	17	$2_{II}^{+2}, 4_7^{+6} *$
			(24 - 24) = 24	17	0+2 4+3
			$((2\mathbb{A}_1, 2\mathbb{A}_1)_I, 8\mathbb{A}_1) \subset 12\mathbb{A}_1$	17	$2_{II}^{+7}, 4_7^{+7} *$
			$(2A_1, 4A_1, 4A_1) \subset 10A_1$	17	$2_{II}^{+-}, 4_7^{+-} *$
			$(2\mathbb{A}_1, 4\mathbb{A}_1, 4\mathbb{A}_1) \subset 2\mathbb{A}_3 \amalg 4\mathbb{A}_1$	17	$\frac{2_{II}}{2^{+4}}, 8_7 *$
			$(2\mathbb{A}_1, 4\mathbb{A}_1, 8\mathbb{A}_1) \subset 2\mathbb{A}_1 \amalg 4\mathbb{A}_3$	17	$2_{II}, 4_7 *$
			$(4A_1, 4A_1, 4A_1) \subset 12A_1$	1 ($2_{II}, 8_{7}$
			$\left(\begin{array}{ccc} 2\mathbb{A}_1 & (4\mathbb{A}_1)_I & (4\mathbb{A}_1)_I & (4\mathbb{A}_1)_I \\ 2\mathbb{A} & (4\mathbb{A}) & (4\mathbb{A}) \end{array}\right)$		
			$2\mathbb{A}_1 (4\mathbb{A}_1)_I (4\mathbb{A}_1)_I \\ 2\mathbb{A} (4\mathbb{A}_1)_I \subset 8\mathbb{A}_1 \ o$	18	$4_6^{+4} *$
			$\begin{array}{c} 2A\mathbb{I}_1 (4A\mathbb{I}_1)I \\ 2\mathbb{A}_2 \end{array}$		
			$\begin{pmatrix} 2\mathbb{A}_1 \\ 2\mathbb{A}_1 \\ (4\mathbb{A}_1)_L \\ (4\mathbb{A}_1)_L \\ 6\mathbb{A}_1 \end{pmatrix}$		
			$\begin{pmatrix} 2\Lambda_1 & (4\Lambda_1)I & (4\Lambda_1)I & 0\Lambda_1 \\ 2\Lambda_1 & (4\Lambda_1)I & 6\Lambda_1 \end{pmatrix}$		
			$\begin{array}{c c} 2\mathbb{A}_1 & (\mathbb{I}\mathbb{A}_1)_1 & \mathbb{O}\mathbb{A}_1 \\ & 2\mathbb{A}_1 & 6\mathbb{A}_1 \end{array} \subset 10\mathbb{A}_1$	18	$4_5^{+3}, 8_1^{+1} *$
			$\begin{pmatrix} 2\pi\pi_1 & 0\pi_1 \\ 4A_1 \end{pmatrix}$		
			$(2\mathbb{A}_1 \ (4\mathbb{A}_1)_I \ (4\mathbb{A}_1)_I \ 6\mathbb{A}_1)$		
			$\begin{bmatrix} 2\mathbb{A}_1 & (4\mathbb{A}_1)_I & 6\mathbb{A}_1 \end{bmatrix} = 4\mathbb{A}_1 = 4\mathbb{A}_1$	10	4+4
			$\begin{bmatrix} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & $	18	$4_{6}^{+} *$
			$ \langle 4\mathbb{A}_1 \rangle$		

Table 4: Types and lattices S of degenerations of codimension ≥ 2 of Kählerian K3 surfaces with symplectic automorphism group $(C_2)^3$.

n	G	Deg	$\operatorname{rk} S$	q_S
9	$(C_2)^3$	$\begin{pmatrix} 2\mathbb{A}_{1} & (4\mathbb{A}_{1})_{I} & (4\mathbb{A}_{1})_{I} & 10\mathbb{A}_{1} \\ 2\mathbb{A}_{1} & (4\mathbb{A}_{1})_{I} & 10\mathbb{A}_{1} \\ 2\mathbb{A}_{1} & 10\mathbb{A}_{1} \\ 8\mathbb{A}_{1} \end{pmatrix} \subset 14\mathbb{A}_{1}$	18	4_{6}^{+4}
		$((2\mathbb{A}_1, 2\mathbb{A}_1)_I, 4\mathbb{A}_1, 4\mathbb{A}_1) \subset 12\mathbb{A}_1$	18	$4_6^{+4} *$
		$((2\mathbb{A}_1, 2\mathbb{A}_1)_{II}, 4\mathbb{A}_1, 4\mathbb{A}_1) \subset 12\mathbb{A}_1 \ o$	18	$2_{II}^{-2}, 4_2^{-2} *$
		$\begin{pmatrix} 2\mathbb{A}_1 & 2\mathbb{A}_3 & (4\mathbb{A}_1)_I & 6\mathbb{A}_1 \\ & 4\mathbb{A}_1 & 6\mathbb{A}_1 & 8\mathbb{A}_1 \\ & & 2\mathbb{A}_1 & 6\mathbb{A}_1 \\ & & & 4\mathbb{A}_1 \end{pmatrix} \subset 2\mathbb{A}_3 \amalg 6\mathbb{A}_1$	18	$2_{II}^{-2}, 4_1^{+1}, 8_5^{-1} *$
		$\begin{pmatrix} 2\mathbb{A}_1 & 2\mathbb{A}_3 & (4\mathbb{A}_1)_I & 6\mathbb{A}_1 \\ & 4\mathbb{A}_1 & 6\mathbb{A}_1 & 8\mathbb{A}_1 \\ & & 2\mathbb{A}_1 & 2\mathbb{A}_3 \\ & & & & 4\mathbb{A}_1 \end{pmatrix} \subset 4\mathbb{A}_3 \ o$	18	$2_{II}^{-2}, 4_2^{-2} *$
		$((2\mathbb{A}_1, 2\mathbb{A}_1)_I, 4\mathbb{A}_1, 8\mathbb{A}_1) \subset 4\mathbb{A}_1 \amalg 4\mathbb{A}_3$	18	$2_{II}^{-2}, 4_2^{-2} *$
		$(2\mathbb{A}_1, 4\mathbb{A}_1, 4\mathbb{A}_1, 4\mathbb{A}_1) \subset 14\mathbb{A}_1$	18	$2_{II}^{+2}, 4_5^{-1}, 8_5^{-1} *$
		$(2\mathbb{A}_1, 4\mathbb{A}_1, 4\mathbb{A}_1, 4\mathbb{A}_1) \subset 2\mathbb{A}_3 \amalg 8\mathbb{A}_1$	18	$2_{II}^{+2}, 4_6^{+2} *$
		$(4\mathbb{A}_1, 4\mathbb{A}_1, 4\mathbb{A}_1, 4\mathbb{A}_1) \subset 16\mathbb{A}_1 \ o$	18	$2_{II}^{+2}, 4_6^{+2} *$
		$\begin{pmatrix} 2\mathbb{A}_{1} & (4\mathbb{A}_{1})_{I} & (4\mathbb{A}_{1})_{I} & (4\mathbb{A}_{1})_{I} & 10\mathbb{A}_{1} \\ 2\mathbb{A}_{1} & (4\mathbb{A}_{1})_{I} & (4\mathbb{A}_{1})_{I} & 10\mathbb{A}_{1} \\ 2\mathbb{A}_{1} & (4\mathbb{A}_{1})_{I} & 10\mathbb{A}_{1} \\ 2\mathbb{A}_{1} & 10\mathbb{A}_{1} \\ 8\mathbb{A}_{1} \end{pmatrix} \subset 16\mathbb{A}_{1} \ o$	19	4_5^{+3} *
		$ \begin{pmatrix} 2\mathbb{A}_{1} & (4\mathbb{A}_{1})_{I} & 6\mathbb{A}_{1} & 6\mathbb{A}_{1} & 6\mathbb{A}_{1} \\ 2\mathbb{A}_{1} & 6\mathbb{A}_{1} & (4\mathbb{A}_{1})_{I} & 6\mathbb{A}_{1} \\ & 4\mathbb{A}_{1} & 6\mathbb{A}_{1} & 8\mathbb{A}_{1} \\ & & 2\mathbb{A}_{1} & 2\mathbb{A}_{3} \\ & & & & 4\mathbb{A}_{1} \end{pmatrix} \subset 8\mathbb{A}_{1} \amalg 2\mathbb{A}_{3} $	19	$4_4^{-2}, 8_5^{-1} *$
		$ \begin{pmatrix} 2\mathbb{A}_{1} & (4\mathbb{A}_{1})_{I} & 6\mathbb{A}_{1} & (4\mathbb{A}_{1})_{I} & 6\mathbb{A}_{1} \\ 2\mathbb{A}_{1} & 2\mathbb{A}_{3} & (4\mathbb{A}_{1})_{I} & 6\mathbb{A}_{1} \\ 4\mathbb{A}_{1} & 6\mathbb{A}_{1} & 8\mathbb{A}_{1} \\ 2\mathbb{A}_{1} & 2\mathbb{A}_{3} \\ 4\mathbb{A}_{1} & 4\mathbb{A}_{1} \end{pmatrix} \subset 2\mathbb{A}_{1} \amalg 4\mathbb{A}_{3} o $	19	4_5^{+3} *

n	G	Deg	$\operatorname{rk} S$	q_S
9	$(C_2)^3$	$ \begin{pmatrix} 2\mathbb{A}_{1} & (4\mathbb{A}_{1})_{I} & (4\mathbb{A}_{1})_{I} & 6\mathbb{A}_{1} & 10\mathbb{A}_{1} \\ 2\mathbb{A}_{1} & (4\mathbb{A}_{1})_{I} & 6\mathbb{A}_{1} & 10\mathbb{A}_{1} \\ 2\mathbb{A}_{1} & 6\mathbb{A}_{1} & 10\mathbb{A}_{1} \\ 4\mathbb{A}_{1} & 4\mathbb{A}_{3} \\ 8\mathbb{A}_{1} \end{pmatrix} \subset 6\mathbb{A}_{1} \amalg 4\mathbb{A}_{3} $	19	$4_5^{+3} *$
		$((2\mathbb{A}_1, 2\mathbb{A}_1)_{II}, 4\mathbb{A}_1, 4\mathbb{A}_1, 4\mathbb{A}_1) \subset 16\mathbb{A}_1 \ o$	19	$2_{II}^{-2}, 8_5^{-1} *$
		$\begin{pmatrix} 2\mathbb{A}_{1} & 2\mathbb{A}_{3} & (4\mathbb{A}_{1})_{I} & 6\mathbb{A}_{1} & 6\mathbb{A}_{1} \\ 4\mathbb{A}_{1} & 6\mathbb{A}_{1} & 8\mathbb{A}_{1} & 8\mathbb{A}_{1} \\ & 2\mathbb{A}_{1} & 2\mathbb{A}_{3} & 6\mathbb{A}_{1} \\ & & 4\mathbb{A}_{1} & 8\mathbb{A}_{1} \\ & & & & 4\mathbb{A}_{1} \end{pmatrix} \subset 4\mathbb{A}_{3} \amalg 4\mathbb{A}_{1} o$	19	$2_{II}^{-2}, 8_5^{-1} *$

Table 5: The List 1.

The list of cases when a degeneration of K3 with a symplectic automorphism group G_1 from Tables 1—4 has, actually the full symplectic automorphism group G_2 from Tables 1—4 which contains G_1 , and $|G_1| < |G_2|$. The group G_2 has less orbits and less codimension of the degeneration than G_1 .

$$(\mathbf{n} = 9, ((2\mathbb{A}_{1}, 2\mathbb{A}_{1}) \subset 4\mathbb{A}_{1})_{II}) \iff (\mathbf{n} = 21, 4\mathbb{A}_{1})$$

$$(\mathbf{n} = 9, (8\mathbb{A}_{1}, 8\mathbb{A}_{1}) \subset 16\mathbb{A}_{1}) \iff (\mathbf{n} = 21, 16\mathbb{A}_{1})$$

$$(\mathbf{n} = 9, ((2\mathbb{A}_{1}, 2\mathbb{A}_{1})_{II}, 4\mathbb{A}_{1}) \subset 8\mathbb{A}_{1}) \iff (\mathbf{n} = 21, (4\mathbb{A}_{1}, 4\mathbb{A}_{1}) \subset 8\mathbb{A}_{1})$$

$$(\mathbf{n} = 9, \begin{pmatrix} 2\mathbb{A}_{1} & (4\mathbb{A}_{1})_{I} & (4\mathbb{A}_{1})_{I} \\ 2\mathbb{A}_{1} & (4\mathbb{A}_{1})_{I} \\ 2\mathbb{A}_{1} & (4\mathbb{A}_{1})_{I} \end{pmatrix} \subset 8\mathbb{A}_{1} \iff (\mathbf{n} = 40, 8\mathbb{A}_{1})$$

$$(\mathbf{n} = 9, ((2\mathbb{A}_{1}, 2\mathbb{A}_{1})_{II}, 4\mathbb{A}_{1}, 4\mathbb{A}_{1}) \subset 12\mathbb{A}_{1}) \iff (\mathbf{n} = 49, 12\mathbb{A}_{1})$$

$$(\mathbf{n} = 9, \begin{pmatrix} 2\mathbb{A}_{1} & 2\mathbb{A}_{3} & (4\mathbb{A}_{1})_{I} & 6\mathbb{A}_{1} \\ 4\mathbb{A}_{1} & 6\mathbb{A}_{1} & 8\mathbb{A}_{1} \\ 2\mathbb{A}_{1} & 2\mathbb{A}_{3} & 4\mathbb{A}_{1} \end{pmatrix} \subset 4\mathbb{A}_{3}) \iff (\mathbf{n} = 22, (4\mathbb{A}_{1}, 8\mathbb{A}_{1}) \subset 4\mathbb{A}_{3})$$

$$(\mathbf{n}=9, \begin{pmatrix} 2\mathbb{A}_{1} & (4\mathbb{A}_{1})_{I} & 6\mathbb{A}_{1} & (4\mathbb{A}_{1})_{I} & 6\mathbb{A}_{1} \\ 2\mathbb{A}_{1} & 2\mathbb{A}_{3} & (4\mathbb{A}_{1})_{I} & 6\mathbb{A}_{1} \\ 2\mathbb{A}_{1} & 2\mathbb{A}_{3} & 4\mathbb{A}_{1} \end{pmatrix} \subset 2\mathbb{A}_{1} \amalg 4\mathbb{A}_{3}) \\ \Leftarrow \quad (\mathbf{n}=22, \begin{pmatrix} 2\mathbb{A}_{1} & 6\mathbb{A}_{1} & 10\mathbb{A}_{1} \\ 4\mathbb{A}_{1} & 4\mathbb{A}_{3} \\ 8\mathbb{A}_{1} \end{pmatrix} \subset 2\mathbb{A}_{1} \amalg 4\mathbb{A}_{3}) \\ (\mathbf{n}=9, ((2\mathbb{A}_{1}, 2\mathbb{A}_{1})_{II}, 4\mathbb{A}_{1}, 4\mathbb{A}_{1}, 4\mathbb{A}_{1}) \subset 16\mathbb{A}_{1}) \Leftarrow (\mathbf{n}=75, 16\mathbb{A}_{1}) \\ (\mathbf{n}=9, \begin{pmatrix} 2\mathbb{A}_{1} & 2\mathbb{A}_{3} & (4\mathbb{A}_{1})_{I} & 6\mathbb{A}_{1} & 6\mathbb{A}_{1} \\ 4\mathbb{A}_{1} & 6\mathbb{A}_{1} & 8\mathbb{A}_{1} \\ 2\mathbb{A}_{1} & 2\mathbb{A}_{3} & 6\mathbb{A}_{1} \\ 4\mathbb{A}_{1} & 4\mathbb{A}_{3} \end{pmatrix} \subset 4\mathbb{A}_{3} \amalg 4\mathbb{A}_{1}) \\ \Leftarrow \quad (\mathbf{n}=22, \begin{pmatrix} 4\mathbb{A}_{1} & (8\mathbb{A}_{1})_{II} & 12\mathbb{A}_{1} \\ 4\mathbb{A}_{1} & 4\mathbb{A}_{3} \\ 8\mathbb{A}_{1} \end{pmatrix} \subset 4\mathbb{A}_{1} \amalg 4\mathbb{A}_{3}) \\ (\mathbf{n}=10, (\mathbb{A}_{1}, \mathbb{A}_{1}) \subset 2\mathbb{A}_{1}) \Leftarrow (\mathbf{n}=22, 2\mathbb{A}_{1}) \\ (\mathbf{n}=10, ((4\mathbb{A}_{1}, 4\mathbb{A}_{1}) \subset 8\mathbb{A}_{1})_{II}) \rightleftharpoons (\mathbf{n}=22, 8\mathbb{A}_{1}) \\ (\mathbf{n}=10, (\mathbb{A}_{1}, \mathbb{A}_{1}, (2\mathbb{A}_{1})_{I}) \subset 4\mathbb{A}_{1}) \Leftarrow (\mathbf{n}=22, (2\mathbb{A}_{1}, 4\mathbb{A}_{1}) \subset 6\mathbb{A}_{1}) \\ (\mathbf{n}=10, (\mathbb{A}_{1}, \mathbb{A}_{1}, 8\mathbb{A}_{1}) \subset 10\mathbb{A}_{1}) \Leftarrow (\mathbf{n}=22, (2\mathbb{A}_{1}, 8\mathbb{A}_{1}) \subset 10\mathbb{A}_{1}) \\ (\mathbf{n}=10, (\mathbb{A}_{1}, \mathbb{A}_{1}, 8\mathbb{A}_{1}) \subset 10\mathbb{A}_{1}) \leftarrow (\mathbf{n}=22, (2\mathbb{A}_{1}, 8\mathbb{A}_{1}) \subset 10\mathbb{A}_{1}) \\ (\mathbf{n}=10, (\mathbb{A}_{1}, \mathbb{A}_{1}, 8\mathbb{A}_{1}) \subset 10\mathbb{A}_{1}) \leftarrow (\mathbf{n}=22, (2\mathbb{A}_{1}, 8\mathbb{A}_{1}) \subset 10\mathbb{A}_{1}) \\ (\mathbf{n}=10, (\mathbb{A}_{1}, \mathbb{A}_{1}, 8\mathbb{A}_{1}) \subset 10\mathbb{A}_{1}) \subset (\mathbb{A}_{1})_{I} \\ (\mathbf{n}=10, (\mathbb{A}_{1}, \mathbb{A}_{1}, 8\mathbb{A}_{1}) \subset 10\mathbb{A}_{1}) \leftarrow (\mathbf{n}=22, (2\mathbb{A}_{1}, 8\mathbb{A}_{1}) \subset 10\mathbb{A}_{1}) \\ (\mathbf{n}=10, (\mathbb{A}_{1}, \mathbb{A}_{1}, 8\mathbb{A}_{1}) \subset 10\mathbb{A}_{1}) \\ (\mathbf{n}=10, (\mathbb{A}_{1}, \mathbb{A}_{1}, 8\mathbb{A}_{1}) \subset 10\mathbb{A}_{1}) = \mathbb{A}_{1} \\ (\mathbb{A}_{1} = 22, (2\mathbb{A}_{1}, 8\mathbb{A}_{1}) \subset 10\mathbb{A}_{1}) \\ (\mathbb{A}_{1} = 22, (2\mathbb{A}_{1}, 8\mathbb{A}_{1}) \subset 10\mathbb{A}_{1}) \\ (\mathbf{n}=10, (\mathbb{A}_{1}, \mathbb{A}_{1}) \subset 10\mathbb{A}_{1}) \\ (\mathbf{n}=10, (\mathbb{A}_{1}, \mathbb{A}_{1}) = \mathbb{A}_{1} \\ (\mathbb{A}_{1} = 10\mathbb{A}_{1}) \\ (\mathbb{A}_{1} = 22, (2\mathbb{A}_{1}, 8\mathbb{A}_{1}) \subset 10\mathbb{A}_{1}) \\ (\mathbb{A}_{1} = 22, (2\mathbb{A}_{1}, 8\mathbb{A}_{1}) \subset 10\mathbb{A}_{1}) \\ (\mathbb{A}_{1} = 22, (2\mathbb{A}_{1}, 8\mathbb{A}_{1}) \subset 10\mathbb{A}_{1}) \\ (\mathbb{A}_{1} =$$

$$\leftarrow (\mathbf{n} = 22, \begin{pmatrix} 2\mathbb{A}_{1} & 6\mathbb{A}_{1} & 10\mathbb{A}_{1} \\ 4\mathbb{A}_{1} & 4\mathbb{A}_{3} \\ 8\mathbb{A}_{1} \end{pmatrix} \subset 2\mathbb{A}_{1} \text{ II } 4\mathbb{A}_{3})$$

$$(\mathbf{n} = 10, \begin{pmatrix} \mathbb{A}_{1} & \mathbb{A}_{3} & 3\mathbb{A}_{1} & 5\mathbb{A}_{1} \\ (2\mathbb{A}_{1})_{II} & 4\mathbb{A}_{1} & 6\mathbb{A}_{1} \\ (2\mathbb{A}_{1})_{I} & 2\mathbb{A}_{3} \\ 4\mathbb{A}_{1} \end{pmatrix} \subset 3\mathbb{A}_{3})$$

$$\leftarrow (\mathbf{n} = 34, (3\mathbb{A}_{1}, (6\mathbb{A}_{1})_{II}) \subset 3\mathbb{A}_{3}))$$

$$(\mathbf{n} = 10, \begin{pmatrix} \mathbb{A}_{1} & 3\mathbb{A}_{1} & 5\mathbb{A}_{1} & 9\mathbb{A}_{1} \\ (2\mathbb{A}_{1})_{I} & (6\mathbb{A}_{1})_{I} & 10\mathbb{A}_{1} \\ 4\mathbb{A}_{1} & 12\mathbb{A}_{1} \\ 8\mathbb{A}_{1} \end{pmatrix} \subset 15\mathbb{A}_{1})$$

$$\leftarrow (\mathbf{n} = 34, (3\mathbb{A}_{1}, 12\mathbb{A}_{1})) \subset 15\mathbb{A}_{1}))$$

 $(\mathbf{n}=10, (\mathbb{A}_1, 4\mathbb{A}_1, 4\mathbb{A}_1, 2\mathbb{A}_2) \subset \mathbb{A}_1 \amalg 6\mathbb{A}_2) \iff (\mathbf{n}=34, (\mathbb{A}_1, 6\mathbb{A}_2) \subset \mathbb{A}_1 \amalg 6\mathbb{A}_2))$

$$(\mathbf{n}=10, \begin{pmatrix} (2\mathbb{A}_{1})_{I} & 4\mathbb{A}_{1} & (6\mathbb{A}_{1})_{I} & (6\mathbb{A}_{1})_{I} \\ (2\mathbb{A}_{1})_{II} & 6\mathbb{A}_{1} & 6\mathbb{A}_{1} \\ 4\mathbb{A}_{1} & (8\mathbb{A}_{1})_{II} \\ (\mathbf{n}=65, \ 12\mathbb{A}_{1}) \\ (\mathbf{n}=10, \begin{pmatrix} (2\mathbb{A}_{1})_{I} & (6\mathbb{A}_{1})_{II} & (6\mathbb{A}_{1})_{I} & (6\mathbb{A}_{1})_{I} \\ 4\mathbb{A}_{1} & (8\mathbb{A}_{1})_{I} & (8\mathbb{A}_{1})_{I} \\ 4\mathbb{A}_{1} & (8\mathbb{A}_{1})_{II} \end{pmatrix} \subset 14\mathbb{A}_{1}) \\ \leftarrow (\mathbf{n}=22, \ (2\mathbb{A}_{1}, 4\mathbb{A}_{1}, 8\mathbb{A}_{1}) \subset 14\mathbb{A}_{1}) \\ \leftarrow (\mathbf{n}=10, \begin{pmatrix} (2\mathbb{A}_{1})_{II} & 6\mathbb{A}_{1} & 6\mathbb{A}_{1} & 6\mathbb{A}_{1} \\ 4\mathbb{A}_{1} & (8\mathbb{A}_{1})_{I} & (8\mathbb{A}_{1})_{I} \\ 4\mathbb{A}_{1} & (8\mathbb{A}_{1})_{I} & (8\mathbb{A}_{1})_{I} \\ 4\mathbb{A}_{1} & (8\mathbb{A}_{1})_{II} \end{pmatrix} \subset 14\mathbb{A}_{1}) \\ \end{array}$$

$$(\mathbf{n}=10, \begin{pmatrix} 4\mathbb{A}_1 & (8\mathbb{A}_1)_I & (8\mathbb{A}_1)_I & 4\mathbb{A}_1 \amalg 2\mathbb{A}_2 \\ 4\mathbb{A}_1 & 4\mathbb{A}_2 & 4\mathbb{A}_1 \amalg 2\mathbb{A}_2 \\ 2\mathbb{A}_2 \end{pmatrix} \subset 4\mathbb{A}_1 \amalg 6\mathbb{A}_2) \\ \Leftarrow (\mathbf{n} = 34, (4\mathbb{A}_1, 6\mathbb{A}_2) \subset 4\mathbb{A}_1 \amalg 6\mathbb{A}_2) \\ (\mathbf{n} = 12, (8\mathbb{A}_1, 8\mathbb{A}_1) \subset 16\mathbb{A}_1) \rightleftharpoons (\mathbf{n} = 75, 16\mathbb{A}_1) \\ (\mathbf{n} = 12, (\mathbb{A}_2, \mathbb{A}_2) \subset 2\mathbb{A}_2) \rightleftharpoons (\mathbf{n} = 26, 2\mathbb{A}_2) \\ (\mathbf{n} = 17, (\mathbb{A}_1, \mathbb{A}_1) \subset 2\mathbb{A}_1) \twoheadleftarrow (\mathbf{n} = 34, 2\mathbb{A}_1) \\ (\mathbf{n} = 17, (\mathbb{A}_1, 3\mathbb{A}_1) \subset 4\mathbb{A}_1) \twoheadleftarrow (\mathbf{n} = 49, 4\mathbb{A}_1) \\ (\mathbf{n} = 17, (4\mathbb{A}_1, 4\mathbb{A}_1) \subset 8\mathbb{A}_1) \twoheadleftarrow (\mathbf{n} = 49, 16\mathbb{A}_1) \\ (\mathbf{n} = 17, (6\mathbb{A}_1, 6\mathbb{A}_1) \subset 12\mathbb{A}_1) \twoheadleftarrow (\mathbf{n} = 49, 16\mathbb{A}_1) \\ (\mathbf{n} = 17, (6\mathbb{A}_1, 6\mathbb{A}_1) \subset 3\mathbb{A}_1) \twoheadleftarrow (\mathbf{n} = 34, 8\mathbb{A}_1) \\ (\mathbf{n} = 17, (\mathbb{A}_1, \mathbb{A}_1, \mathbb{A}_1) \subset 3\mathbb{A}_1) \twoheadleftarrow (\mathbf{n} = 61, 3\mathbb{A}_1) \\ (\mathbf{n} = 17, (\mathbb{A}_1, \mathbb{A}_1, 4\mathbb{A}_1) \subset 6\mathbb{A}_1) \twoheadleftarrow (\mathbf{n} = 34, (2\mathbb{A}_1, 4\mathbb{A}_1) \subset 6\mathbb{A}_1) \\ (\mathbf{n} = 17, (\mathbb{A}_1, \mathbb{A}_1, 4\mathbb{A}_1) \subset 6\mathbb{A}_1) \twoheadleftarrow (\mathbf{n} = 34, (2\mathbb{A}_1, 12\mathbb{A}_1) \subset 14\mathbb{A}_1) \\ (\mathbf{n} = 17, (\mathbb{A}_1, \mathbb{A}_1, 4\mathbb{A}_1) \subset 6\mathbb{A}_1) \twoheadleftarrow (\mathbf{n} = 34, (2\mathbb{A}_1, 12\mathbb{A}_1) \subset 14\mathbb{A}_1) \\ (\mathbf{n} = 17, (\mathbb{A}_1, \mathbb{A}_1, 12\mathbb{A}_1) \subset 16\mathbb{A}_1) \twoheadleftarrow (\mathbf{n} = 34, (2\mathbb{A}_1, 12\mathbb{A}_1) \subset 14\mathbb{A}_1) \\ (\mathbf{n} = 17, (\mathbb{A}_1, \mathbb{A}_1, 12\mathbb{A}_1) \subset 16\mathbb{A}_1) \twoheadleftarrow (\mathbf{n} = 34, (2\mathbb{A}_1, 12\mathbb{A}_1) \subset 14\mathbb{A}_1) \\ (\mathbf{n} = 17, (\mathbb{A}_1, \mathbb{A}_1, 12\mathbb{A}_1) \subset 16\mathbb{A}_1) \twoheadleftarrow (\mathbf{n} = 34, (\mathbb{A}_1, 8\mathbb{A}_1) \subset 14\mathbb{A}_1) \\ (\mathbf{n} = 17, (\mathbb{A}_1, \mathbb{A}_1, 4\mathbb{A}_1) \subset 11\mathbb{A}_1) \twoheadleftarrow (\mathbf{n} = 34, (\mathbb{A}_1, 6\mathbb{A}_2) \subset \mathbb{A}_1 \amalg 6\mathbb{A}_2) \\ (\mathbf{n} = 17, (\mathbb{A}_1, 4\mathbb{A}_1, 4\mathbb{A}_1) \subset 11\mathbb{A}_1) \twoheadleftarrow (\mathbf{n} = 34, (\mathbb{A}_1, 10\mathbb{A}_2) \subset \mathbb{A}_1 \amalg 6\mathbb{A}_2) \\ (\mathbf{n} = 17, (\mathbb{A}_1, 4\mathbb{A}_1, 4\mathbb{A}_1) \subset 11\mathbb{A}_1) \twoheadleftarrow (\mathbf{n} = 34, (\mathbb{A}_1, 10\mathbb{A}_2) \subset \mathbb{A}_1 \amalg 6\mathbb{A}_2) \\ (\mathbf{n} = 17, (\mathbb{A}_1, 4\mathbb{A}_1, 4\mathbb{A}_1) \subset 11\mathbb{A}_1) \twoheadleftarrow (\mathbf{n} = 34, (\mathbb{A}_1, 10\mathbb{A}_2) \subset \mathbb{A}_1 \amalg 6\mathbb{A}_2) \\ (\mathbf{n} = 17, (\mathbb{A}_1, 4\mathbb{A}_1, 4\mathbb{A}_1) \subset 11\mathbb{A}_1) \twoheadleftarrow (\mathbf{n} = 34, (\mathbb{A}_1, 10\mathbb{A}_2) \subset \mathbb{A}_1 \amalg 6\mathbb{A}_2) \\ (\mathbf{n} = 17, (\mathbb{A}_1, 4\mathbb{A}_1, 4\mathbb{A}_2) \\ \mathbb{A}_1 \end{pmatrix} \subset (\mathbb{A}_1 \oplus 3\mathbb{A}_1, (\mathbb{A}_1, 10\mathbb{A}_2) \subset \mathbb{A}_1 \oplus 3\mathbb{A}_1) \subset 11\mathbb{A}_1) \\ (\mathbf{n} = 17, (\mathbb{A}_1, 4\mathbb{A}_2, 8\mathbb{A}_1) \\ (\mathbf{n} = 17, (\mathbb{A}_1, 4\mathbb{A$$

$$(\mathbf{n} = 17, (4\mathbb{A}_{1}, 4\mathbb{A}_{1}, 6\mathbb{A}_{1}) \subset 14\mathbb{A}_{1}) \iff (\mathbf{n} = 34, ((6\mathbb{A}_{1})_{I}, 8\mathbb{A}_{1}) \subset 14\mathbb{A}_{1})$$

$$(\mathbf{n} = 17, (4\mathbb{A}_{1}, 6\mathbb{A}_{1}, 6\mathbb{A}_{1}) \subset 16\mathbb{A}_{1}) \iff (\mathbf{n} = 75, 16\mathbb{A}_{1})$$

$$(\mathbf{n} = 17, (4\mathbb{A}_{1}, 6\mathbb{A}_{1}, 6\mathbb{A}_{1}) \subset 4\mathbb{A}_{1} \amalg 6\mathbb{A}_{2}) \iff (\mathbf{n} = 34, (4\mathbb{A}_{1}, 6\mathbb{A}_{2}) \subset 4\mathbb{A}_{1} \amalg 6\mathbb{A}_{2})$$

$$(\mathbf{n} = 21, (4\mathbb{A}_{1}, 4\mathbb{A}_{1}, 4\mathbb{A}_{1}, 4\mathbb{A}_{1}) \subset 12\mathbb{A}_{1}) \iff (\mathbf{n} = 49, 12\mathbb{A}_{1})$$

$$(\mathbf{n} = 21, (4\mathbb{A}_{1}, 4\mathbb{A}_{1}, 4\mathbb{A}_{1}, 4\mathbb{A}_{1}) \subset 16\mathbb{A}_{1}) \iff (\mathbf{n} = 75, 16\mathbb{A}_{1})$$

$$(\mathbf{n} = 22, (2\mathbb{A}_{1}, 2\mathbb{A}_{1}) \subset 4\mathbb{A}_{1}) \iff (\mathbf{n} = 39, 4\mathbb{A}_{1})$$

$$(\mathbf{n} = 22, (2\mathbb{A}_{1}, 2\mathbb{A}_{1}) \subset 4\mathbb{A}_{1}) \iff (\mathbf{n} = 39, 16\mathbb{A}_{1})$$

$$(\mathbf{n} = 22, (4\mathbb{A}_{1}, 4\mathbb{A}_{1}) \subset 8\mathbb{A}_{1})_{I} \iff (\mathbf{n} = 40, 8\mathbb{A}_{1})$$

$$(\mathbf{n} = 22, (2\mathbb{A}_{1}, 2\mathbb{A}_{1}, 4\mathbb{A}_{1}) \subset 8\mathbb{A}_{1}) \iff (\mathbf{n} = 56, 8\mathbb{A}_{1})$$

$$(\mathbf{n} = 22, (2\mathbb{A}_{1}, 2\mathbb{A}_{1}, 4\mathbb{A}_{1}) \subset 16\mathbb{A}_{1}) \iff (\mathbf{n} = 56, 12\mathbb{A}_{1})$$

$$(\mathbf{n} = 22, (2\mathbb{A}_{1}, 2\mathbb{A}_{1}, 8\mathbb{A}_{1}) \subset 16\mathbb{A}_{1}) \iff (\mathbf{n} = 55, 12\mathbb{A}_{1})$$

$$(\mathbf{n} = 22, ((4\mathbb{A}_{1}, 4\mathbb{A}_{1}), 8\mathbb{A}_{1}) \subset 16\mathbb{A}_{1}) \iff (\mathbf{n} = 56, 16\mathbb{A}_{1})$$

$$(\mathbf{n} = 34, (\mathbb{A}_{1}, 2\mathbb{A}_{1}) \subset 3\mathbb{A}_{1}) \iff (\mathbf{n} = 51, 2\mathbb{A}_{1})$$

$$(\mathbf{n} = 34, (\mathbb{A}_{1}, 3\mathbb{A}_{1}) \subset 4\mathbb{A}_{1}) \iff (\mathbf{n} = 51, 8\mathbb{A}_{1})$$

$$(\mathbf{n} = 34, (4\mathbb{A}_{1}, 3\mathbb{A}_{1}) \subset 4\mathbb{A}_{1}) \iff (\mathbf{n} = 51, 8\mathbb{A}_{1})$$

$$(\mathbf{n} = 34, (4\mathbb{A}_{1}, 4\mathbb{A}_{1}) \subset 8\mathbb{A}_{1}) \iff (\mathbf{n} = 51, 8\mathbb{A}_{1})$$

$$(\mathbf{n} = 34, (4\mathbb{A}_{1}, 4\mathbb{A}_{1}) \subset 8\mathbb{A}_{1}) \iff (\mathbf{n} = 51, 12\mathbb{A}_{1})$$

$$(\mathbf{n} = 34, (4\mathbb{A}_{1}, 4\mathbb{A}_{1}) \subset 16\mathbb{A}_{1}) \iff (\mathbf{n} = 55, 12\mathbb{A}_{1})$$

$$(\mathbf{n} = 34, ((6\mathbb{A}_{1})_{II}) \subset 12\mathbb{A}_{1}) \iff (\mathbf{n} = 56, 8\mathbb{A}_{1})$$

$$(\mathbf{n} = 39, (4\mathbb{A}_{1}, 4\mathbb{A}_{1}) \subset 8\mathbb{A}_{1}) \iff (\mathbf{n} = 56, 12\mathbb{A}_{1})$$

$$(\mathbf{n} = 39, (4\mathbb{A}_{1}, 4\mathbb{A}_{1}) \subset 8\mathbb{A}_{1}) \iff (\mathbf{n} = 75, 16\mathbb{A}_{1})$$

$$(\mathbf{n} = 40, (8\mathbb{A}_{1}, 8\mathbb{A}_{1}) \subset 16\mathbb{A}_{1}) \iff (\mathbf{n} = 55, 16\mathbb{A}_{1})$$

$$(\mathbf{n} = 49, (4\mathbb{A}_{1}, 4\mathbb{A}_{1}) \subset 8\mathbb{A}_{1}) \iff (\mathbf{n} = 55, 16\mathbb{A}_{1})$$

$$(\mathbf{n} = 49, (4\mathbb{A}_{1}, 4\mathbb{A}_{1}) \subset 8\mathbb{A}_{1})$$

2 Classification of Picard lattices of K3 surfaces.

Actually, classification of Tables 1—4 contains the important classification of Picard lattices of K3 surfaces.

Let S_X be the Picard lattice of a Kählerian K3 surface X, and $S_X < 0$, is negative definite. For algebraic K3, instead of S_X one can take $(h)_{S_X}^{\perp}$ where $h \in S_X$ is a numerically effective element with $h^2 > 0$.

Let $G = Aut(X)_0$ be the full symplectic automorphism group of X (it is finite) and let $E_1, \ldots E_k$ are all non-singular irreducible rational curves on X. Then

$$S = [(S)_G = (S_X)_G, cl(E_1), \dots cl(E_k)]_{pr} \subset S_X$$

gives the most important part of the Picard lattice S_X : (the main part of the Picard lattice S_X or MS_X . The remaining part $S \subset S_X$ of S_X gives exotic part of S_X or (exotic $ES_X = (S)_{S_X}^{\perp}$ part of the Picard lattice S_X). Classification of possible $S = MS_X$ is the most important.

Obviously, the lattice $S = MS_X$ is one of lattices of Tables 1—4 (if $G > D_6$). The only difference is that the group Gmust be the maximal symplectic automorphism group of K3 for S. From the point of view of abstract lattices, $e_1 = cl(E_1), \ldots, e_k = cl(E_k)$ give the basis of the root system of (-2)-roots of the lattice S, and

$$G|S = \{g \in O(S) \mid g(\{e_1, ..., e_k\}) = \{e_1, ..., e_k\}), \ g|(S^*/S) = id\}.$$

The sublattice $S \subset S_X$ is the most important part of the Picard lattice: $S = MS_X$.

Another characterization of $S = MS_X$ is as follows. Let

$$H(S_X) = \{ g \in O(S_X) \mid g \mid A(S_X) = (S_X)^* / S_X = identity \}.$$

Then $S = MS_X = (S_X)_{H(S_X)}$. Also $H(S_X) = W^{(-2)}(S_X) \rtimes G$.

For some two cases of Tables 1—4, lattices $S_1 \cong S_2$ can be isomorphic, but their symplectic groups $G_1 \subset G_2$ are subgroups of one another only of different orders $|G_1| < |G_2|$.

All pairs with isomorphic lattices S, but subgroups $G_1 \,\subset\, G_2$ $|G_1| < |G_2|$ are given in Table 5. The case (S, G_1) is denoted by o (old) in Tables 1—4. Thus, for the classification of Picard lattices, we can delete the case (S, G_1) . But, this cases is important as itself: If K3 surface X has the symplectic automorphism group G_1 and the degeneration S, then the full symplectic automorphism group of X is larger, it is G_2 with $|G_1| < |G_2|$. The group G_2 has less orbits and less codimension of the degeneration than G_1 . Therefore, the Table 5 is very interesting and important.

Exactly that happens for the case of Kummer surfaces: $|G_1| = 1$, $G_2 = (C_2)^4$, $S = [16A_1]_{pr}$: Kummer surfaces give the degeneration of the type 16A₁ (or the codimension 16) of K3 with trivial symplectic automorphism group C_1 , when the symplectic automorphism group becomes $(C_2)^4$. In 1974, I showed that K3 with 16 (sixteen) \mathbb{P}^1 and Dynkin diagram 16A₁ is Kummer.

Thus, finally, we get

Theorem. The classification of Picard lattices $S = MS_X$ of K3 surfaces X with finite symplectic automorphism groups which are sufficiently large (larger than D_6 , C_4 , $(C_2)^2$, C_3 , C_2 and C_1) and with at least one (-2)-curve are given in Tables 1-4 in lines which are not denoted by the o.

3 Concluding remarks.

I hope to consider the remaining (small) symplectic automorphism groups D_6 , C_4 , $(C_2)^2$, C_3 , C_2 , C_1 later. Cases of D_6 and C_4 were recently considered in my papers [Nik14], [Nik15] of 2019. Now I consider the case of $(C_2)^2$. For this case, degenerations can be of codimension t = 1, 2, ..., 6, 7. There are many cases, but I hope to consider them soon.

Now, for the few remaining groups we have:

Theorem. If the Picard lattice $S = MS_X$ of K3 surface X with at least one (-2)-curve is different from given in lines of Tables 1—4 and tables of [Nik14] for D₆ and tables of [Nik15] for C₄ which are not denoted by the sign o (for example, if its genus is different), then the symplectic automorphism group of X is small: it is one of groups $(C_2)^2$, C_3 , C_2 or C_1 . I hope to consider them later.

Methods.

1) Markings by negative definite even unimodular lattices; for K3, it is enough to use Niemeier lattices N of rank 24. Their roots ($\alpha \in N$ with $\alpha^2 = -2$) sublattices are

 $N^{(2)} = [\Delta(N)] =$

(1) D_{24} , (2) $D_{16} \oplus E_8$, (3) $3E_8$, (4) A_{24} , (5) $2D_{12}$,

(6) $A_{17} \oplus E_7$, (7) $D_{10} \oplus 2E_7$, (8) $A_{15} \oplus D_9$, (9) $3D_8$,

(10) $2A_{12}$, (11) $A_{11} \oplus D_7 \oplus E_6$, (12) $4E_6$, (13) $2A_9 \oplus D_6$,

(14) $4D_6$, (15) $3A_8$, (16) $2A_7 \oplus 2D_5$, (17) $4A_6$, (18) $4A_5 \oplus D_4$, (19) $6D_4$, (20) $6A_4$, (21) $8A_3$, (22) $12A_2$, (23) $24A_1$

give 23 Niemeier lattices N_j . The last is Leech lattice (24) with $N^{(2)} = \{0\}$ which has no roots. Further, N(R) denotes the Niemeier lattice with the root system R. We fix the basis P(N) of the root system $\Delta(N)$ of N. By $A(N) \subset O(N)$ we denote the subgroup of the group of automorphisms of N which preserves (permutes) the basis P(N).

The action of G on K3 can be modeled by $G \subset A(N)$ and its t orbits $G(r_1), \ldots, G(r_t)$ of roots $r_1, \ldots, r_t \in P(N)$. The lattice

$$S = [N_G, G(r_1), \ldots, G(r_t)]_{pr} = [N_G, r_1, \ldots, r_t]_{pr} \subset N.$$

It gives a degeneration of K3 with G of codimension t we are looking for iff S has a primitive embedding to the cohomology lattice $L_{K3} = H^2(X, \mathbb{Z})$ which is an even unimodular lattice of signature (3, 19).

2) We need results about existence of primitive embeddings of lattices into even unimodular lattices.

Both this methods and results were suggested and developed in my papers:

Nikulin, Finite automorphism groups of Kähler K3 surfaces, English transl. in Trans. Moscow Math. Soc. V. 38 (1980), 71–135.

Nikulin, Integral symmetric bilinear forms and some of their geometric applications, English transl. in Math. USSR Izv. 14 (1980), no. 1, 103–167.

3) We need classification of possible abstract finite symplectic automorphism groups of K3. Abelian such groups were classified in my paper above. Non-Abelian were classified by Sh.Mukai, Finite groups of automorphisms of K3 surfaces and the Mathieu group, Invent. math. **94**, (1988), 183–221.

4) We use computer. We write programs.

References

- [Bou] N. Bourbaki, Groupes et algèbres de Lie, Groupes de Coxeter et systèmes de Tits, Groupes engendres par des reflexions, systèmes de racines, Hermann, Paris VI, 1968.
- [BR] D. Burns, M. Rapoport, On the Torelli problem for Kählerian K-3 surfaces, Ann. scient. Éc. Norm. Sup. 4^e ser. 8 (1975), 235–274.
- [CS] J.H. Conway, N.J.A. Sloane, Sphere packings, lattices and groups, Springer, 1988. 663 pages.
 - [1] The GAP Group, GAP-Groups, Algorithms and Programming, Version 4.6.5, 2013, http://www.gap-system.org
- [Hash] K. Hashimoto, Finite symplectic actions on the K3 lattice, Nagoya Math J., 206 (2012), 99–153 (see also arXiv:1012.2682).
 - [2] D.G. James, The number of embeddings of quadratic Z-lattices, J. Number Theory 58, (1996), 1–8.
 - [3] Sh. Kondō, Niemeier lattices, Mathieu groups, and finite groups of symplectic automorphisms of K3 surfaces (with appendix by Sh. Mukai), Duke Math. J. 92, (1998), 593–603.
- [Kul] Vic. S. Kulikov, Degenerations of K3 surfaces and Enriques surfaces, Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977), no. 5, 1008–1042; English transl. in Math. USSR Izv. 11, (1977) no. 5, 957–989.
 - [4] R. Miranda, D.R. Morrison The number of embeddings of integral quadratic forms.
 I, Proc. Japan Acad. 61, Ser. A (1985), 317–320.
 - [5] R. Miranda, D.R. Morrison The number of embeddings of integral quadratic forms.
 II, Proc. Japan Acad. 62, Ser. A (1986), 29–32.
- [Muk] Sh. Mukai, Finite groups of automorphisms of K3 surfaces and the Mathieu group, Invent. math. 94, (1988), 183–221.
- [Nik1] V.V. Nikulin, On Kummer surfaces, Izv. Akad. Nauk SSSR Ser. Mat. **39** (1975), no. 2, 278–293; English transl. in Math. USSR Izv. **9** (1975), 261–275.

- [Nik2] V.V. Nikulin, Finite automorphism groups of Kählerian surfaces of type K3, Uspehi matem. nauk **31** (1976), no. 2, 223–224. (In Russian.)
- [Nik3] V.V. Nikulin, Finite automorphism groups of Kähler K3 surfaces, Trudy Mosk. Mat. ob-va V. 38 (1979), 75–137; English transl. in Trans. Moscow Math. Soc. V. 38 (1980), 71–135.
- [Nik4] V. V. Nikulin, Integral symmetric bilinear forms and some of their geometric applications, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 1, 111–177; English transl. in Math. USSR Izv. 14 (1980), no. 1, 103–167.
- [Nik5] V. V. Nikulin, Involutions of integral quadratic forms and their applications to real algebraic geometry, Izv. Akad. Nauk SSSR Ser. Mat. 47 (1983), no. 1, 109–188; English transl. in Math. USSR Izv. 22 (1984), no. 1, 99–172.
- [Nik7] V. V. Nikulin, Kählerian K3 surfaces and Niemeier lattices. I, Izvestiya RAN: Ser. Mat. 77 (2013), no. 5, 109–154; English transl.: Izvestya: Mathematics 77 (2013), no. 5, 954–997 (see also arXiv:1109.2879).
- [Nik8] V.V. Nikulin, Kählerian K3 surfaces and Niemeier lattices, II, Advanced Studies in Pure Mathematics **69**, 2016, Development of Moduli Theory—Kyoto 2013, 421–471 (see also arXiv:1109.2879).
- [Nik9] V.V. Nikulin, Degenerations of Kählerian K3 surfaces with finite symplectic automorphism groups, Izvestiya RAN: Ser. Mat. 79 (2015), no. 4, 103–158; English transl.: Izvestya: Mathematics 79 (2015), no. 4, 740–794 (see also arXiv:1403.6061).
- [Nik10] V. V. Nikulin, Degenerations of Kählerian K3 surfaces with finite symplectic automorphism groups. II, Izvestiya RAN: Ser. Mat. [80] (2016), no. 2, 81–124; English transl.: Izvestya: Mathematics 80 (2016), no. 2, 359–402 (see also arXiv:1504.00326).
- [Nik11] V.V. Nikulin Degenerations of Kählerian K3 surfaces with finite symplectic automorphism groups. III, Izvestiya RAN: Ser. Mat. 81 (2017), no. 5, 105–149; English transl.: Izvestya: Mathematics 81 (2017), no. 5, 985–1029 (see also arXiv:1608.04373).
- [Nik12] V.V. Nikulin Classification of Picard lattices of K3 surfaces, Izvestiya RAN: Ser. Mat 82 (2018), no. 4 (in publication) (see also arXiv: 1707.05677).

- [Nik13] V.V. Nikulin Classification of degenerations and Picard lattices of K3 surfaces with small finite symplectic automorphism groups, *Preprint*, 39 pages, arXiv: 1804.00991.
- [Nik14] V.V. Nikulin Classification of degenerations and Picard lattices of Kählerian K3 surfaces with symplectic automorphism group D_6 , Izvestiya RAN: Ser. Math 83 (2019), no. 6, 1201–1233.
- [Nik15] V.V. Nikulin Classification of degenerations and Picard lattices of Kählerian K3 surfaces with symplectic automorphism group C_4 , Proc. Steklov Inst. Math., V. 207 (2019), 130–161.
- [PS] I.I. Pjatetskii-Šapiro and I.R. Šafarevič, A Torelli theorem for algebraic surfaces of type K3, Izv. AN SSSR. Ser. mat., 35 (1971), no. 3, 530–572; English transl.: Math. USSR Izv. 5 (1971), no. 3, 547–588.
- [Sf] I.R. Shafarevich (ed.), Algebraic Surfaces, Proc. Steklov Math. Inst. **75** (1965),3–215.
- [Siu] Y. Siu, A simple proof of the surjectivity of the period map of K3 surfaces, Manuscripta Math. **35** (1981), no. 3, 311–321.
- [Tod] A. Todorov, Applications of the Kähler–Einstein–Calabi–Yau metric to moduli of K3 surfaces, Invent. math. 61 (1981), no. 3, 251–265.
- [Xiao] G. Xiao, Galois covers between K3 surfaces, Ann. Inst. Fourier (Grenoble) **46** (1996), 73–88.

V.V. Nikulin

Steklov Mathematical Institute, ul. Gubkina 8, Moscow 117966, GSP-1, Russia; Deptm. of Pure Mathem. The University of Liverpool, Liverpool L69 3BX, UK

nikulin@mi.ras.ru vnikulin@liv.ac.uk vvnikulin@list.ru Personal page: http://vvnikulin.com