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Abstract

The partition functions of euclidean quantum field theory can be de-
scribed as maps from the space of compact manifolds with Riemannian
metric that have few derivatives. Their fields are just those derivatives. This
generalizes Einstein’s characterization of the energy-momentum tensor as
the affine derivative with respect to the metric. For conformal field theories
in two dimensions the dependence on Weyl transformations can be factored
out, at the price of introducing an automorphy factor for the action of the
mapping class group. In a simple case, this leads to a generalization of the
Rogers-Ramanujan functions to arbitrary genus.

0



1 Euclidean Quantum Fields: the theory of
very smooth partition functions

Some 40 years ago, Don Zagier asked me three questions: What is quantum field
theory? What is a field? Why are physicists interested in automorphic forms, in
particular in modular forms? I hope that my attempts to answer these questions
are becoming comprehensible for mathematicians. First, fix a dimension d.

Let R be the set of compact d-dimensional manifolds M with Riemannian
metric g (up to isomorphisms). Partition functions are maps

Z : R → R+.

Any (specimen of) euclidean quantum field theory is determined by its partition
function.

One example is
Z = det(∆g + m2)−1/2,

where ∆g is the Laplacian for the metric g and m is a real number. This defines
what is called the quantum field theory of a free scalar of mass m.

Given a partition function Z, what are the corresponding fields? On R there is
a natural notion of derivative, modelled on the derivatives of functions on affine
spaces A. Partition functions must be smooth in the sense of admitting arbitrary
derivatives. For given Z, two derivatives are considered equivalent when they have
the same action on Z. The equivalence classes are called the fields of Z.
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We shall consider axioms for quantum field theory. For d = 1 they have
no physical meaning, but provide a useful perspective. In this case R consists of
circles characterized by their circumference x and disjoined unions of such circles.
The axioms imply that Z(x) satisfies a linear differential equation with constant
coefficients. In other words, Z has finite dimensional spaces of derivatives modulo
equivalence. In a sense, the partition functions for d = 1 are the simplest smooth
elementary functions. Partition functions of euclidean quantum field theories are
characterized by a similar property. We will say that they are very smooth.

Though very smooth functions are the simplest smooth functions on R, their
investigation is still in its infancy. For d = 2, however, in many cases Z is known
when the genus of M is restricted to 0 or 1. For genus 1 one may suppose that M
is the torus C/〈1, τ〉 with volume V and metric

g = exp(χ)dzdz̄.

Then in one case, called the (2,5) minimal model

Z(M) = exp
(
−

11
120π

∫
χK

)
(| f (τ)|2 + |g(τ)|2),

where f , g are the Rogers-Ramanujan modular functions and

K = −∂∂̄χ

is the Gauss curvature. Modular forms come into play, since

det′(∆g) = V exp
(
−

1
24π

∫
χK

)
Im(τ)|η(τ)|4.

2



1.1 Derivatives

On an affine spaceA a natural operation is the translation by a vector v. Moreover,
vectors can be scaled by ε ∈ R+. Regard each vector as a basis element [v] of a
very big vector space and consider finite formal sums

A =
∑

i

ai[vi],

where the ai are real numbers. For A , 0 there is a unique maximal number k ∈ N
so that

Dk(A) f (x) = lim
ε→0

ε−k
∑

i

ai f (x + εvi)

exists for any smooth f : A → R. We write D(A) = Dk(A) for this derivative of
order k. When D(A1) = D(A2) then D(A1 − A2) is a derivative of higher order.

We want to define derivatives for partition functions based on local changes
of elements of R. A natural operation is cutting and glueing. Let B be a man-
ifold with Riemannian metric that has the unit sphere in Rd as boundary. Such
manifolds can be scaled by ε ∈ R+ so that the boundary becomes the sphere with
radius ε. Given a chart of M and a frame at a point x in this chart one can cut out a
small sphere of radius ε in M and glue in the rescaled B. The result will be called
BεM(x). Consider formal sums B =

∑
i ai[Bi]. Local derivatives D(B) of order

k ∈ R are defined as before, as limits

lim
ε→0

ε−k
∑

i

aiZ(BiεM(x)).
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One precision concerning R: One needs BεM(x) ∈ R, thus we admit metrics
which are continuous and piecewise smooth, where the pieces are submanifolds
of M with smooth boundaries. Nevertheless, values of derivatives of Z will only
be considered at smooth points of R.

Multilocal derivatives are defined analogously, with metric manifolds B hav-
ing m boundary components, all given by unit spheres. After rescaling they can
be glued in around m distinct points x1, . . . , xm of M.

If B1, B2 have m1,m2 boundary components respectively, then B1 t B2 has
m1 + m2 boundary components. One has

(B1 t B2)εM = B1ε(B2εM),

with an obvious choice of the insertion points. The glueing operation is commu-
tative, so that fields at distinct points should be given by commuting derivative
operators.

4



1.2 Axioms

Partition functions have to satisfy four axioms. Axiom 1 states that they are mul-
tiplicative with respect to disjoint union:

Z(M1 t M2) = Z(M1)Z(M2).

As in this case, we often suppress one or both arguments of Z(M, g).

Secondly, partition functions must be smooth. This is expressed by the axioms
2a and 2b, though one hopes that they might be combined when the theory is
understood better.

Axiom 2a uses the fact that the space of metrics on a manifold is locally affine.
It states that Z is smooth with respect to the corresponding derivatives.

Axiom 2b states that for every non-zero B there should be a non-zero deriva-
tive D(B) acting on Z.

By abuse of notation, the corresponding field (equivalence class) will be de-
noted by the same expression. The order of D(B) is called the scaling dimension
of the field.

Axiom 3 states that Z is very smooth in the following sense. There exists an
integer m0 such that manifolds B with less than m0 boundary components and their
disjoint unions are sufficient to obtain all multi-local fields.
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1.3 The case d=1

For d = 1 axiom 1 implies that Z is determined by its values on circles of circum-
ference x. By axiom 2 it must be a smooth function of x. To use Axiom 3 let B be
a circle with two intervals cut out. One obtains

Z(x1 + x2) =
∑

i, j

ai j
diZ(x1)

dxi
1

d jZ(x2)

dx j
2

,

where the sum is finite. This implies that Z satisfies a linear ODE with constant
coefficients.

The case d = 1 is useful for illustration, but of no physical importance. From
here on we consider d > 1.

1.4 Notation

The definition of a field φ = D(B) uses a chart U with coordinate x. By abuse of
notation we do not distinguish between points in U and their coordinates. When
we write φ(x) we refer to the whole family of derivatives for points in the chart.

Let φ1, . . . , φn be fields. Physicists use the notation

〈φ1(x1) . . . φn(xn)〉 = φ1(x1) . . . φn(xn)Z,

and 〈1〉 = Z in the case n = 0. These functions are called n-point functions.

By axiom 2a the n-point functions are smooth as long as the xi are distinct.
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1.5 The energy-momentum tensor

According to axiom 2a one can define the standard functional derivative δZ/δgµν(x)
of Z with respect to the metric

g = gµνdxµdxν.

Following Einstein, it is denoted by

−
1
2

T µν(x) =
δ

δgµν
(x).

Thus
Z(g + εh) = Z(g) −

ε

2

∫
hµν(x) T µν(x)Z dV + O(ε2),

with the volume measure dV given by the metric g.

Equivalently, let B1, B2 be unit balls with metrics g1, g2 and corresponding
volume elements dV1, dV2. Then D(B1 − B2) is a field of dimension d with

D(B1 − B2)(x) = −
1
2

T µν(x)
∫

(g1
µνdV1 − g2

µνdV2).

The summation over µ, ν is implied (Einstein convention).

By definition, the field T µν is called the energy-momentum tensor. Under
coordinate transformation it transforms dually to the metric.
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By definition, the elements of R are defined up to isomorphism. Thus a
change of the metric by reparametrization must not change Z. For infinitesimal
reparametrizations this is expressed by

DµT µν = 0,

where Dµ is the covariant derivative on M with respect to the Levi-Civita connec-
tion for g.

A euclidean quantum field theory is called conformal, if Z transforms canoni-
cally under Weyl transformations (rescalings of the metric g by a factor expχ(x)).
This means that the trace gµνTµν of the energy-momentum tensor must be canoni-
cal. For d = 2

gµνT µν =
c

24π
R,

where R is the curvature of the metric and the number c is called the central charge.
From now on we only will consider theories of this kind.

Consider two metrics related by a Weyl transformation,

g2 = exp(χ)g1.

One obtains
log(Z(g2)/Z(g1)) =

c
48π

∫
χ(K1 + K2),

where K1,K2 are the Gauss curvature forms of g1, g2. When the genus of M is
zero, then any two metrics are related by an isomorphism and a Weyl transforma-
tion, so Z is fixed up to a factor, which can be chosen according to convenience.
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In complex coordinates z the metric takes the form g = 2 exp(χ)dzdz̄. When
one defines

T (z)
2π

= Tzz +
c

24π

(
∂2χ

∂z2 −
1
2

(∂χ
∂z

)2
)

in a conformal theory with central charge c, then T (z) commutes with Weyl trans-
formations and the invariance of Z with respect to reparametrizations implies that
T ( z) is a holomorphic function of z.

Consider a holomorphic vector field v(z)∂z in a tubular neighborhood of a
closed curve C on M. One can change the complex structure of M by cutting
along C, changing the complex coordinate on the left side according to v and
glueing back. Up to possible curvature terms the corresponding change of Z is
given by the action of ∮

C
vT

dz
2πi

+ complex conjugate.

For constant v this operator describes the translation and reglueing of the interior
of C. In particular, the all insertion points of fields within C will be translated.
Thus the n-point functions of any fields are real analytic.

When one considers non-contractable curves C, it follows that derivatives of
Z with respect to the complex moduli of M are given by the 1-point function of
T , Derivatives of the 1-point function are given by the 2-point function etc. In the
minimal models a finite set of n-point functions determines all of them, so that
one obtains a system of ODEs for Z with respect to the complex moduli.

9



2 Z for hyperelliptic M in a minimal model

When B has genus zero and one boundary circle, then BεM(x) has the same genus
as M. Thus for genus 0 all n-point functions of the field T can be calculated. For
c = −22/5 one finds

T (z1)T (z2) =
c
2

(z1 − z2)−4 + (T (z1) + T (z2))(z1 − z2)−2 −
1
5

T ′′(z1) + O(z1 − z2).

The singular terms are generic, but only for c = −22/5 can the order zero term be
written as a derivative of T . The form is invariant under holomorphic coordinate
changes. The (2,5) minimal model is defined by the validity of this relation for M
of any genus.

Let M be given by a hyperelliptic curve y2 = p(x) with a monic polynomial
p of odd order N. As metric use g = dxdx̄ outside of small circles around the
ramification points and complete it by the flat metric inside these circles.
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Let T e(x) be the even part of T with respect to the sign change of y. Then

θ = pT e −
c

32
p′2

p

is regular at finite x and satisfies

θ(x) =
c

32
(1 − N2)xN−2 + O(xN−3)

at∞. The singularities of the n-point functions at the partial diagonals xi = x j are
known, so that these functions are determined up to polynomials of order N − 3
in each variable. In the (2,5) minimal model the restrictions of these polynomials
to the partial diagonals are known by recursion. Thus all the polynomials are
determined by FN coefficients, where the FN are the Fibonacci numbers F3 = 2,
F5 = 5 etc. With respect to each zero of p, Z satisfies an ODE of order FN (joint
work with Marianne Leitner).
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Let Xi, i = 1, . . . ,N be the zeros of p. For N = 3 one obtains

DiZ =
2

p′(x)
〈θ(x)〉|X=Xi

where
Di =

∂

∂Xi
−

c
8

∑
j,i

1
Xi − X j

and

Di〈θ(xi)〉 =

(
7c

320
(p′′)2

p′
(Xi) −

27c
80

)
Z +

9
10
〈θ(Xi)〉.

When one fixes two zeros at 0,1, this is a (2,1) hyperelliptic ODE with parameters
3
10 ,−

1
10 ,

3
5 . This is a prominent case in Schwarz’ study of hyperelliptic ODEs

with algebraic solutions. When one changes to the flat torus metric, the solutions
become the Rogers-Ramanujan modular functions. There are two of them since
F3 = 2.

12



For higher N the equations become more complicated, since the Fibonacci
numbers increase exponentially. The coefficients are always differential polyno-
mials in p divided by p′, so the singularities are regular. The Frobenius indices
remain the same. When three ramification points approach each other, M splits
into into a manifold of lower genus and a torus T and the FN-dimensional so-
lution space decomposes into FN−1 and FN−2-dimensional subspaces. The FN−2-
dimensional subspace just corresponds to the splitting M = M′ t T.The FN−1-
dimensional subspace describes the insertion of a field Φ = D(T′), where the
prime denotes the removal of a disk from T. Changing the shape of T′ yields the
same field up to a multiplicative constant.

When only two ramification points approach each other one obtains a cylinder
inserted at two points x, y and x,−y. Up to a constant the result is the same as
for T′ t T′. Indeed the (2,5) minimal model satisfies axiom 3 with m0 = 2. The
scaling dimension of Φ is −2/5, given by the corresponding Frobenius index.

For derivatives on affine spaces there no negative orders, indeed we have
D([v]) = 1 for any vector v. In unitary quantum field theories one also has
D([B]) = 1 for any B. In general this is only true when B has genus zero.

Negative scaling dimensions indicate instabilities when one tries to go from
euclidean space to Minkowski space by analytic continuation. But any Minkowskian
theory should yield a euclidean one, so our axioms constitute a reasonable starting
point for mathematicians who want to work in quantum field theory.
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