SCHLESINGER ISOMONODROMIC DEFORMATION

IRINA BOBROVA

ABSTRACT. We consider the isomonodromic criterion of the family of Fuchsian systems and Schlesinger
isomonodromic deformation. We get Schlesinger system of equations and understand how to get the sixth
Painlevé equation from it. The contents of this talk refers to the book [ ].

CONTENTS

1. MONODROMY AND ISOMONODROMIC CRITERIA

1.1. Definitions. Let us consider Fuhcsian connection

d dy
o= _B p
Voy=o —BQRy yel,
and the equation corresponding to it
dy
1 -~ =8B
(1) i (2)y

Let us consider a point z € U (0) \ {20} = U (0) and some matrix of fundamental solutions Y (z) of the
system (1) in a neighborhood of z.

For each loop v € U (0), which starts at zo, the matrix Y (z) extends analytically along 7. The result of
such continuation is a matrix Y (z). Since two fundamental matrices are dependent in a neighborhood of a
singular point, we have

Y(2)=Y(2)G,, G,€GL,(C).
Therefore, there is a homomorphism from fundamental group of loops to non-degenerative matrices
2) Xo: 7 (ff 0) ,ZO) — GL, (C).

The map (?) is a local monodromy representation at the point z = 0.

dy L 1 z zlnz
Pz e ve-(; )
dz (0 0) 0 1

Analytical continuation along the loop « around the point z = 0 is

- [z zlnz42miz\ (2 zlnz\ (1 2m
Y(Z)_<0 1 )‘(0 1>(0 1)'

Therefore, the monodromy matrix is

Example 1.

&= (3 7).
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Now we will interested in deformations which preserve monodromy matrices, i.e. isomonodromic deforma-
tions. The isomonodromic problem is a problem of an embedding of the system (1) into a family of systems

which are holomorphic in a parameter b = (by,...,b;) € C*

dy
3 — =B(zb cr
(3) 5, ~ B=by, yeCh,

and coincides with (1) when b = b°.
Definition 1. The system (3) is a deformation of the system (1).

Remark. Intuitively, the system (3) is an isomonodromic deformation if for each fixed parameter b the system
(3) has the monodromy matrix which coincides with a monodromy matrix of system (1), i.e. when b = b°.
But if parameter b is different, then a family of singular points of the system (3) is different too. On the
other hand, the monodromy

(4) x:m (C\{a1,...,an}) = GL, (C)

has different domains C\ {ay, ..., a,} for different values of the parameter b. Hence, we should precise when
maps (1) coincide.

Remark. The most interesting case is when the parameter b is a set of singular points of the system (3), i.e.
a=(ar,...,an).

So, let us consider Fuchsian system of p linear differential equations with singular points a1,...,a, € C
on the Riemann sphere

i=1

d " BY n
dz:<222—ai>y7 y e, ;Bg:oa

and the family of systems (3)

dy . Bz(a) n
(5) dZ:<Z;Z_a>y, yecp’ Bl(ao):B?7 ;Bzzoa

?

which depends holomorphic in the parameter a = (a1,a,) € D (ao), where D (ao) is a local ball in the space

C\ U {a; = a;}. We do not include diagonals {a; = a;} since we consider singular points which change
i
their position and do not coincide with each other.
The family (5) is on the space

T:(CXD(aO))\U{z—aizo}, z€C.

i=1

We will look at the set of loops ¢f,...,¢0 € C\ {a},...,a%}, which start at zo and generate the group
m (C\ {af,...,a%}, 20).

Let g¢,..., g% be loops on the space C\ {ay,...,a,}, which begin from zy and generate the fundamental
group m (C \ {aq,... 7an},zo). Let each of such loops t,g%t;! on the space T' be homotopic to a corre-
sponding loop g9, where t, is a path from (zo, ao) to (zg,a) on T.

If the parameter a changes a bit, then such homotopies are possible due to the fact that the space T is
represented as the set of nm-punctured balls, which are contractible on each of their stalks. Therefore, we
have a canonical isomorphism between fundamental groups

m (C\{a1,...,an},20) = (C\{al,.... a0} 20).

Definition 2. The family (5) is called isomonodromic if for each fixed a € D (ao) the corresponding system
(5) has the same monodromy matrix as a monodromy matrix with parameter a = a” (up to the homotopic
classes of g% and a) respectively).

Therefore, for each parameter a there is a fundamental matrix Y (z, a) which corresponding to the system
(5) and which has similar monodromy matrix as the monodromy matrix with parameter a = a° (up to a
loop ¢¢) for each parameters a € D (ao). Hence, Y (2, a) is an isomonodromic family of matrices.



Example 2. Let us look at the family

% - <Z :i?) y, D bi(a)=0, yecC

The solution is

n

br
y(za) =c() ] (z—ax)™?,

k=1
where the factor corresponding to a loop gf equals exp (2miby (a)). This family is isomonodromic if by, (a) =
const.
1.2. Isomonodromic criteria.

Theorem 1. The family (5) of Fuchsian systems is isomonodromic if and only if on the space T there is a
matriz holomorphic differential 1 - form Q such that

(1) Q,=w=>", ZBZ_(Z) dz for each a € D (a°),
(2) dQ=QAQ. '
Proof. (=)

Let us consider analytic isomonodromic fundamental matrix Y (z,a) of the family (5). Then matrix
differential 1 — form is

Q=dY (z,) Y ' (2,a).
(1) For each loop g € w1 (T, (20,a)) an analytic continuation ¢g*$2 of the form 2 along a loop ¢ is
g'Q=d(g"Y) (¢"Y) "
= (dYGy) (Gg_lY_l)
= (dYy)Yy !
=Q.

Since for each fixed point a € D (a®) the matrix Y (z,a) is a fundamental matrix of the corre-
sponding system of the family (5), we have

dY (z,a) ", B;(a)
—, = <Zza¢>y(2’a)'

(2)
dQ= (Y)Y~ —dY Ad (Y
=—dY Ad (Y
=dY AY Y)Y !
=WdY)Y ' A@Y)Y !
=QAQ.
(<)

Let Q be a matrix holomorphic differential 1 — form on the space T', which satisfies theorem conditions.
Let us consider a complex manifold

M=TxGL,(C)
with coordinates ((z,a),Y), and p? differential equations on M in the following form
(6) dy — QY =0.

According to Frobenius theorem, for each point ((zo, ao) ,YO) € M the equation () has a local solution
Y =Y (z,a) with initial condition ¥’ (207(10) = Y? if matrix holomrphic differential 1 — form © = (6;;) =
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dY — QY satisfies the total integrability condition, i.e. for each elements 0;; its differential can be represented
i the form df;; = >, ; o A Ox1, where oy are certain holomorphic on M differential 1 — forms.

dO = d*Y —d(QY)
= (—dQ)Y +QAdY
= (=dQ)Y + QA (0 +QY)
=(—dQU+QAQY +QAO
=QAO.

Since 2 satisfies the first theorem condition, the fundamental matrix Y (z,a) of the equation (0) is a
fundamental matrix of the family (3) at each fixed point a € D (a”). Moreover, the matrix Y (z,a) is
isomonodromic since for each point a € D (ao) it has the same monodromy matrix with respect to loops
g¢ € m (C\{a1,...,an},20). These monodromy matrices coincide with monodromy matrices which are
corresponding to the analytic continuation of Y (z,a) as a function on the space T along the loops, which
loop hyperplanes {z — a; = 0}. Therefore, the family (3) is the isomonodromic family. O

Remark. The Isomonodromic farr}ily (3) is completely defined by the 1 — differential form €2, but ambiguous.
We can define another 1 — form Q = Q + df (a) 1, where f (a) is a holomorphic in D (a”) function. Hencce,

dQ = dQ,
and
AQANQ=QAQ+df NQ+QAdf + (df Ndf)1
=QAQ.
2. SCHLESINGER ISOMONODROMIC DEFORMATION

We are interested in Fuchsian system
dy . B
7 — = g C
(7) dz (i_ Z—a; v

and its deformation of the following form

(8) Ws = Z Bi_(zz d(z—a;).

z

Definition 3. The differential 1 — form (8) is called Schlesinger deformation.

First of all, we should show that such isomonodromic deformation (8) of the system (7) exists, i.e. there
is the following problem

dws = ws Nwg, B (a?) = B?.
Remark. Obviously, the first criteria of the theorem | holds.

Theorem 2. dw, = w, A wg <

" " 9B; d(z —a; " CNOB; d(z —a;) ANd zZ—a;
:Z Z dz A(7)+ZZ ( ) ( )

Oa; Z— a;



On the other hand,
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:ZZBZBJ ( - >d(zal)/\d(zaj)
T ai—aj zZ — Qg z—aj
=1 j=1
Since dz Ad(z—a1) A+~ ANd(z—a,) = (=1)"dz Ada; A -+ N da, # 0, 2 — forms dz A d(z — a;),
d(z—a;) Nd(z—a;), i < j, are linearly independent over the field of the meromorphic functions in the

space C x D ( )
By comparing the coefficients at the corresponding 2 — forms dz A d(z — a;), d(z — a;) Ad (2 — a;), we
have

n

=1 7
and due to the antysymmetry of the wedge product,
B, 1 B, 1 B;, B; 1 1 C
a _aj :[ J]< - >7 Z#Ja ZvJ:]-vnv
Oaj z—a; Oa; z—a; a;—aj \z—a; Z—a;

0B, [BZ-,B]-] 1 0B, [Bl-,Bj] I 0
da; ai—a; ) z—a; \da; a;i—a;)z—a;

Functions 1/ (z — a;) and 1/ (2 — a;) define a basis if ¢ # j. Hence,

Z 3aj 0,

(9) i,j=Tn.
gBl = [BZ,BJL { #]5

aj a; — aj

Multiply the first equation of the system (9) by da; and sum over all ¢ # j:

0B; [Bi, Bj]
dBl - 8&1 aj = —Z R Rt (—daj).

J#i 8%

Add the obtained equations and take into account the second equation of the system (9):

- [B%B‘] .
dBi:_jZ#ai—and(ai_aj)’ i=1,n.

(<)
Suppose that we have the following system

dBi:—Zi[Bi’Bj]d(ai—aj), Z:].,’I’L

FEE R
Note that
dB; = d da,,
(a) 8a1 gLttt Oay, “
0B; 0B;
= Z da; 3g, dai + Oa; da.

J#



Hence,

—~ OB, dB; —~ [Bi, Bj] —~ [Bi, Bj]
4 g = v das — = das.
7 9% R TT ; ai—a; 2 ai—a;

By comparing the corresponding coeflicients at dayj, we have

OB; ZB,,B]
Oa; o pore a; — a;

J#i
9B _ Z [Bi, Bj]
8ai Py a; — Clj

Add the obtained equations and take into account that the first equation holds for all j # i, we have

Z 5‘a] 0,

j=1

1=1,n
0B; B;, B; .,
) = [ ]] y ) 7é Z,
a; a; — Ay
So, we have obtained the system (9) corresponding to the condition dws = ws A ws. g
Theorem 3. The system (9) is integrable.
Proof. Let us consider the complex manifold D (a°) xgl, (C) x --- x gl, (C) with the coordinates (a, By, ..., By)
and np? equations on this space in the following form
[Bi, Bj]
10 dB; 2 d(a; —a;) =0.
(10) +Za17aj (a; — aj)
J#i
Let us consider the 1 — form €;
~ [Bi, Bj]
Q;, =dB; " d (a; —
T oo dlei—ay)
J#i
If each ; satisfies the conditions of Frobenius theorem, then for each set of initial data BY, ..., B? there

are holomorphic in D (a°) solutions B; (a) = B;, BY = B; (a°), of the equation (10).

- d(a; — ay)
Q0. = d?B. B, B A 737
dQ =d z+§l 'd[ i Bj] A P
J#i
d(ai—aj)

Z [dB;, Bj] + [Bi,dBj]) A

a; — a;
J#i v

" [B;,B;

Take into account that dB; = — E 7[ , Bil d(a; — aj) + ;. Hence,
a; — a;
g#

n

Bl,B [Bj,Bk] d(ai —aj)
in:Z Q Zaz_aj _a'j)ij + Bian_Z%d(aj_ak) /\7_

J#i

_ Z 0, B;) ZZ B:, Byl d( | aj)‘)/\(d'(ai —)ak)

j#i J#1 k#i

+5 5 B [B;. By d(?;,_ %) A d,(

j#i k#j i —aj) (a; — ax) i a; — a;




Denoteii[[Bi,Bk],Bj] d(a; = a;) N i~ o) ZZ i» [Bj, Bkl] dlai — a;) Nd{a; — ar) by ©;

j#i ki (a; —ag) a; — a) Py (a; — a;) (a; — a)
d(a; —a;
and expand the coeflicients at %_ Then
i Yy
ds; =@»+Zn:(Q-B» — B + B;Q; — Q.B;) A d(a; — aj)
7 % - 1) g i bg i p—
J#i
®i+Z<QiABj(aa])Qj/\BinjQi/\erBin/\W),
i di = aj ai = a; a;i — a; a; — aj

If ©; = 0, then the conditions of Frobenius theorem hold and we are done. So, by taking into account
Jacobi identity [[B;, B;], Bx| + [[Bj, Bi| , Bi] + [[Bk, Bi] , Bj] = 0, let us consider the first part of ©;:

n

ZZ [B;, Bx) , d( —a;) A (a; — ag) _ Z ([Bi. B;), By] — [[Bs, Bi] . B;)) d(a; —a;) A (a; — ak).

i ki (a; — a;) (a; — ak) (a; —a;) (a; — ay)

k<j
JkFi

By using this relation
([Bi, B, Bi] — [[Bi, Bl , B;] = — [[Bj, Be| , Bi] (= [Bi, [Bj, Bill)
we obtain the following

@i = Z [B’L'a [B]aBk” d(((l;_a;))/\(j(izak)ak) + Z [BZ, [Bj,Bk]]
k<i o kA

d(a; —a;) Nd(a; — ag)

(a; — a;) (a; — ax)

= [B;, [B;, Byl w1 + Z Bi,[B;, Byl w2 + Z‘ [Bi, [Bj, Bi]] w2

k<j k<j k> j
ok #1i jFkFi JFEkF
= Z [Bza[BjaBkH(‘ul_F Z 17 BJ7B/€”w2_ Z 17 B]aBkHw?)a
k<j k<j k<j
GkEi JAk JAkH
d(a; —a;)Nd(a; — d(a; —a;) Nd(a; — d(a; — ANd
where w; — (a; —aj) Nd(a ak),m: (ai —a;) Nd(ay ak)’and%: (a; —ax) Nd(a; —ax) o
(a; — a;) (a; — ax) (a; —a;) (a; — ax) (a; — ax) (a; — ak)
w1+ wo —wsg =0.
Therefore, ©; = 0. O

3. PAINLEVE VI EQUATION

We will start with the following
Example 3. The explicit solution of the given equation

dy 2
dt - y ?
where 32 is the holomorphic function in C, is
1
)= ——,
y(t) =—1— i
and it has the simple pole at ¢t = tg, which depends on the %g.

Definition 4. If singular points of a differential equation depend on the initial data, then such points are
called movable.

Definition 5. A differential equation satisfies Painlevé property, if its explicit solution has movable simple
poles only.



8

Remark (historic). Among equations of the form

du
i P
dt (t?u) b

where P (t,u) is a meromorphic function in ¢ and a rational function in w, the Riccati equation satisfies the
Painlevé property only:

du
=B Fauta(),
where a; (t) are the meromorphic functions in t.
If we consider which equations of the following form

d?u du
Z - _p -
dt? (t’u’ dt) ’

satisfy the Painlevé property, we find out that they are classified into 50 classes, and six of them define new
special functions which are called Painlevé transcendents. The corresponding differential equations, that
define these new function, are Painlevé equations.

We would like to show that the sizth Painlevé equation

(11) @fl 14, 1 + 1 dﬁ 2, 1+ 1 + 1 dj
a2 2\u  u—-1 wu-—t dt t t—1 wu—t/) dt

u(u—1)(u—1t) t t—1 t(t—1)
- 2(t—1)> <a+ﬁu2+7(u—l)2+6(u—t)2>

is equivalent to Schlesinger isomonodromic deformation of Fuchsian system of two differential equations with
four simple poles.

So, let us consider the isomonodromic family of Fuchsian systems which consists of two differential equa-
tions and has four simple poles at the points 0, 1, ¢, and oc:

dy Bo(t) | Bi(t) | By(t)
(12) 7 (z,t)y, Bzt Tt
where ¢ € D (t°) c C\ {0,1}.
Suppose that the monodromy group of the family (12) belongs to the Lie group SLs (C) 3 7 (C\ {0,1}, %),
and residues B; (t) € sla (C).
Demand that the residue Bs = —By — By — By at t = oo of the matrix B (z,t) is diagonalizable.

Remark. If the system (12) is Schlesinger deformation, then Bs is a constant matrix.
Denote the eigenvalues of B; (t) by +6;.
Remark. The eigenvalues of the matrices B;, i = 0,1,2, 3, do not depend on the parameter ¢.
Since the matrix Bs is diagonalizable, we can transform it to the diagonal matrix Bs = diag {03, —05}.

Then
o 1 Zo —U (3?0 — 90)
B (Z,t) - P <u_1 (370 4 90) —x

+ 1 X1 —v (1[,'1 — 91)
z—1 \v! (x1+61) —I

+ 1 o —w (SCQ — 92)
z w1t (CEQ + 02) —Z2 ’

By taking in account that Bs = diag {03, —05}, we have the following system of algebraic equations

(13) To + x1 + x9 = —03,
u(xg—6p) +v(x1 —01) +w(xe —03) =0,
’ll,i1 (iL’O —+ 90) —+ 1)71 (.Tl —+ 91) —+ wil (ZL’Q — 92) = O

The element b5 of the matrix Bs equals zero, so the same element of the matrix z (z — 1) (z — t) B (2, )
is a polynomial in z of degree 1 at the fixed point ¢t. Denote the unique root of this polynomial by y (¢).
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Theorem 4. If matrices By (t), By (t), B2 (t) of the family (12) satisfy Schlesinger system (9), then the
function y (t) satisfies the sizth Painlevé equation (11), where the constants are
1 1
a:§(293—1)2, B=-205, y=20% &=5—2;

Proof.
The first step.
Write down the element bio of the matrix B (z,t) in the following form

_u(:co—é?o) B v (z1 — 07) B w (g — 63)

bia (2,1) = z z—1 z—1t
_ x(z—y(?))
2(z=1)(z—1t)’
where sc = (t + 1) u (zg — 0o) + tv (x1 — 01) + w (x2 — 63) and sy (t) = tu (o — o).
(14) w=(t+1)u(xo—0bp) +tv(xy —b1) +w(z2 —02),
sy (t) = tu(xo — o) .
Denote

Zo T T2
(15) x(t)—y+y_1 p—
by z (t).

The equation (15) together with (13) and (14) defines six equations for nine functions xg, x1, 2, u, v,
w, z, and y of the parameter ¢. Express six of them thought last three functions. Hence, from the second

equation of the system (13), we have
7y
U= ——",
t(zo — bo)

then the first equation is written as
w=sy+(t—1)v(z1—0b1),
and we obtain
#x(y—1)
(t — 1) (371 — 91)
Substitute u and v into the second equation of the system (13). So,
w(y—t
w -t
t(t — 1) (IQ — 62)
Substitute found functions u, v, w into the third equation of the system (13). Then we have got the
system of algebraic equations with respect to xg, =1, and xs:

V= —

o+ x1 + w3 = —03,
Zo Z1 T2
0 =z,
y y—1 y—t
t t—1 t(t—1)
5(503—93)—yj(iff—@)ﬂ‘ft(x%—@=0-
The obtained system has the following solution
(16)
Y 2 ot 2t —1 2t (t—1) 2
= — —1)(y—t 203 (y— 1) (y —t)x — 05— -0 —t—1
o 2Hgt(y(y Jy—t)a”+203(y—1)(y—t)= 90y+91y_1 C— +(y )03 ),
y—1 2 2t 2t —1 2t (t—1) 2
=" -1 —t 20 —t)x—05—+0 -0 —t+1)0
0 =g (- D=0 4 2y - 02 - L ot g - nag).
y—t 2 ot gt —1 2t (t—1) 2
=— —1)(y—t 205 (y—1)x—605—+0 -0 t—1)05 ).
T2 W5t (L — 1) (i‘/(y J(y—t)z=+203(y— 1) Oy+ o1 T +(y+ ) 03

Therefore, we have got the expressions of the functions xg, z1, T2, u, v, and w via s, z, and y.
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The second step.
Recall that the family (12) is Schlesinger isomonodromic deformation, i.e. the differential 1 — form

satisfies Frobenius integrability condition
dws = ws N ws.
Write down this condition for the matrix B (z,t)
0B (z,t) Bs (t) n [B(z,t), By (t)]

o (z—t)? z—t ’

or for the matrix elements of B (z,t)

0b 1
a11 __ T S+

ob -0 1
12 = _’LU (xQ 2) —+ p (—2b12x2 — 2b11w (1‘2 — 92)) .

(17) (barw (w2 — 02) + byyw ™" (w2 + 62)) ,

ot (z —t)? z—
On the other hand, we can take the derivative of bijs = M with respect to t:
z(z=1)(z—1t)
dx dy
- R L R A R G
ot 2(z—1)(z—1)°

By comparing relations of 9;b12 from (17) and (18), we are able to obtain the differential relations of the
functions x (t), y (t), and » (¢):

1dsx 1 dy I z(z—=1)(z—1) 2x9 _2(300 x1 T2 )z(z—l)(y—t)

I tt—1)(z—1vy)"

s dt  z—ydt zft__t(tfl)(zft)(zfy) z—t

Resides at z =0 and z = 1 are

ldxe 1dy 1 2x4 y—t
(19) -t = — = —= 25—,
xdt  ydt ot t tt—1y
1 dsx 1 der 1 215 9 y—t
el bt — — 9
s)dt 1—ydt  1—t t—1 Ytt—1)(1—y)
respectively.

d
Furthermore, we find out an expression of d—:tr, if we represent the function z (¢) in the form x (t) = b11 (y, (), t).

Then, by taking into account the first equation of the system (17) and the fact that b1z (y (¢),t) = 0, we get

dz 8611@+ 0b11
dt — \ 9z dt ot

o 1 T2 \dy | @ 1
( Yy (y_ 1)2 (y—t)2> dt (y—t)2 y—t 21 (y ) ( 2 2)

z=y(t)

Since
b (yt):$0+90 r1 + 01 To + 0
2 yu (y—Dv (y—tHw
t 2 2 t—1 2 2 tt-1) 2
= — (a5 —05) — ——— (x7 —07) + x5 —05),
%yz(o O) %(y—1)2<1 1) (y—t)2(2 2)
then
’LU(LL‘Q—GQ)
b t =b t
21 (¥, 1) y—t 21(y7)t 1




11

Therefore, the derivative of x with respect to t is expressed in the following way

dx 2o 1 T dy T
R + N
dt <y2 -1 (y- t)2> dt — (y—t)?

1 t 2 2 t—1 9 5 tt—1), , )
+t(t1)<y2($0—90)_(y_1>2($1—91)+(y_t)2(x2—92)>.

dx
If we substitute expressions of the functions xg, z1, and x2 (10) into the obtained result for — and then

use the subtraction of the expressions (19), we obtain the system of differential equations of the first order
with respect to z (t) and y (¢):

(20)
dx 1 t t—1 t(t—1)
— =2ty -3 +2y—t)2* + (1 -2y — 03— + 6} — 03 03 (65 — 1
dt— t(t—1) <( yo e+ (- e fy-1)° 2(yﬂf)2+ 1=l )

Sy STES R
2\yly-(y—t)dt y—t)

By substitution x (¢) into the first equation of the system (20), we obtain the equation (11) with respect
to y (t) whose parameters are determined by the theorem condition. O
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