A class of solutions of Witten–Dijkgraaf–Verlinde–Verlinde equations

Misha Feigin

University of Glasgow
School of Mathematics and Statistics

Integrable Systems and Automorphic Forms, Sirius Mathematics Centre, Sochi February 2020

Overview

- Rational V-systems
- 2 Trigonometric case
- 3 Elliptic case

Let A be a finite collection of covectors $\alpha \in V^*$, $V \cong \mathbb{C}^n$. We are interested in solutions

$$F(x_1,\ldots,x_n) = \sum_{\alpha\in\mathcal{A}} \alpha(x)^2 \log \alpha(x), \quad x = (x_1,\ldots,x_n) \in V,$$

of generalized Witten–Dijkgraaf–Verlinde–Verlinde (WDVV) equations of the form

$$F_i F_j^{-1} F_k = F_k F_j^{-1} F_i, \quad 1 \le i, j, k \le n,$$

where F_i is the $n \times n$ matrix, whose (pq)-entry is $\frac{\partial^3 F(x)}{\partial x_i \partial x_p \partial x_q}$.

Origins of these solutions when A = R is a Coxeter root system:

• **Dubrovin's almost duality** [Dubrovin'03]:

F is almost dual to polynomial Frobenius manifold structure on the orbit space V/W, where $W=\langle s_\alpha:\alpha\in\mathcal{R}\rangle$ is a finite Coxeter group.

$$u*v=E^{-1}\circ u\circ v.$$

Seiberg-Witten theory [Marshakov, Mironov, Morozov'96]:
 F is the perturbative part of Seiberg-Witten prepotential

For general A:

V-system [Veselov'98]:
 Geometric reformulation of the property that F is a soltion.

(Rational) ∨-system

Consider bilinear form on V given by

$$G_{\mathcal{A}}(u, v) = \sum_{\alpha \in \mathcal{A}} \alpha(u)\alpha(v),$$

for any $u, v \in V$, and suppose G_A is non-degenerate. Let $\varphi: V^* \to V$ be the corresponding isomorphism:

$$G_{\mathcal{A}}(\varphi(\alpha), \mathbf{v}) = \alpha(\mathbf{v})$$

for any $\alpha \in V^*$, $v \in V$. Denote $\alpha^{\vee} = \varphi(\alpha)$.

Definition (Veselov'98)

 $\mathcal A$ is a (rational) \vee -system if for any 2-dimensional plane $\pi\subset V^*$ and any $\alpha\in\mathcal A\cap\pi$ $\sum \ \alpha(\beta^\vee)\beta=\lambda\alpha$

$$\beta \in \mathcal{A} \cap \pi$$

for some $\lambda \in \mathbb{C}$.

Theorem (Veselov'99; F., Veselov'07)

The following conditions are equivalent:

- lacktriangle \mathcal{A} is a \lor -system
- F satisfies WDVV
- **3** Multiplication $u * v = \sum_{\alpha \in \mathcal{A}} \frac{\alpha(u)\alpha(v)}{\alpha(x)} \alpha^{\vee}$ is associative $(x, u, v \in V; \alpha(x) \neq 0 \ \forall \alpha \in \mathcal{A})$.
- $G_{\pi}|_{\pi^{\vee}\times V} \sim G_{\mathcal{A}}|_{\pi^{\vee}\times V} \text{ if } |\pi\cap\mathcal{A}| \geq 2, \text{ where } G_{\pi}(u,v) = \sum_{\alpha\in\mathcal{A}\cap\pi}\alpha(u)\alpha(v), \text{ and } G_{\mathcal{A}}(\alpha^{\vee},\beta^{\vee}) = 0 \text{ if } \pi\cap\mathcal{A} = \{\alpha,\beta\}.$

Example (Martini, Gragert'99; Veselov'99)

Let $\mathcal{A} = \mathcal{R}$ be a Coxeter root system: $V \cong V^*$, $\forall \alpha, \beta \in \mathcal{R}$ $s_{\alpha}(\beta) = \beta - \frac{2(\alpha, \beta)}{(\alpha, \alpha)} \alpha \in \mathcal{R}$. Then $\langle s_{\alpha} : \alpha \in \mathcal{R} \rangle$ is a finite Coxeter group. In this case $G_{\mathcal{A}} \sim (\cdot, \cdot)$.

Operations with \(\structure{-}\) systems

• **Subsystems.** Let W be a subspace in V^* . Let $\mathcal{B} = \mathcal{A} \cap W$. Then $\mathcal{B} \subset (W^{\vee})^*$.

Theorem (F., Veselov'07)

Let \mathcal{A} be a \vee -system. Then subsystem \mathcal{B} is a \vee -system provided that $G_{\mathcal{B}}|_{W^{\vee}}$ is non-degenerate.

• **Restrictions.** Let \mathcal{B} be a subsystem in \mathcal{A} . Define $W_{\mathcal{B}} = \{x \in V : \beta(x) = 0 \ \forall \beta \in \mathcal{B}\} \subset V$. Consider resitriction $\pi_{\mathcal{B}}(\mathcal{A}) = \{\alpha|_{W_{\mathcal{B}}} : \alpha \in \mathcal{A}, \alpha|_{W_{\mathcal{B}}} \neq 0\} \subset W_{\mathcal{B}}^*$.

Theorem (F., Veselov'05)

Let \mathcal{A} be a \vee -system. Then restriction $\pi_{\mathcal{B}}(\mathcal{A})$ is also a \vee -system provided that $G_{\mathcal{A}}|_{W_{\mathcal{B}}}$ is non-degenerate.

Example (Chalykh, Veselov'01)

$$\mathcal{A} = \{c_i c_j (e^i - e^j) : 1 \le i < j \le n\}$$
 is a \vee -system for generic c_i .

Trigonometric solutions of WDVV equations

Let $\mathcal{A} \subset V^*$. Let $c: \mathcal{A} \to \mathbb{C}$, denote $c_{\alpha} = c(\alpha)$. Let

$$F^{t}(x_{1},\ldots,x_{n},y)=\mu\sum_{\alpha\in\mathcal{A}}c_{\alpha}f(\alpha(x))+\frac{1}{3}y^{3}+y\sum_{\alpha\in\mathcal{A}}c_{\alpha}\alpha(x)^{2},$$

where $f(z)=\frac{1}{6}iz^3+\frac{1}{4}Li_3(e^{-2iz}), \ \frac{d^3Li_3(z)}{dz^3}=\cot z; \ \mu\in\mathbb{C}.$ Origins of these solutions:

- **Dubrovin's almost duality** F^t is (expected to be) almost dual to Frobenius manifold structure on the (extended) affine Weyl group orbit space $\mathcal{M} = (V \oplus \mathbb{C})/\widehat{W}$ (\mathcal{M} is given by Dubrovin, Zhang, Zuo, Strachan [1998-2015]; F^t partly confirmed in [Riley, Strachan'07])
- Seiberg-Witten theory [Marshakov, Mironov, Morozov'96]:
 F^t is the perturbative part of 5d Seiberg-Witten prepotential
- Reductions of hydrodynamic chains
 Similar solutions [Pavlov'06]

Quantum cohomology of ADE resolutions

Quantum Cohomology of resolutions of ADE singularities

Let Y be the minimal resolution of ADE singularity \mathbb{C}^2/Γ , where $\Gamma \subset SL(2,\mathbb{C})$ is of ADE type (via McKay correspondence). Let $V = H^2(Y,\mathbb{Z})$.

Diagonal action of \mathbb{C}^* on \mathbb{C}^2 lifts to \mathbb{C}^* action on Y. Then equivariant quantum cohomology $QH^*(Y,\mathbb{Z})$ are generated by 1 and exceptional divisors E_1,\ldots,E_n over $\mathbb{C}[y][[x_1,\ldots,x_n]]$, where x_i are quantum parameters corresponding to E_i .

Theorem (Bryan, Gholampour'07)

Quantum product in $QH_{\mathbb{C}^*}(Y,\mathbb{Z})$ is governed by genus 0 Gromov–Witten potential F^t .

Trigonometric ∨-systems

Suppose A belongs to a lattice.

For each $\alpha \in \mathcal{A}$ decompose non-collinear vectors from \mathcal{A} ,

$$A = \sqcup_{s} \Gamma_{\alpha}^{s}$$

where each "series" Γ^s_{α} satisfies the following property: for any $\beta, \gamma \in \Gamma^s$ $\beta + \epsilon \gamma = m\alpha$ for some $\epsilon \in \{1, -1\}$, $m \in \mathbb{Z}$.

Example

Let
$$\mathcal{A}=BC_2^+=\{e^1,2e^1,e^2,2e^2,e^1+e^2,e^1-e^2\}$$
. Then
$$\Gamma^1_{2e^1}=\{e^1+e^2,e^1-e^2\},\Gamma^2_{2e^1}=\{e^2\},\Gamma^3_{2e^1}=\{2e^2\};$$

$$\Gamma^1_{e^1}=\{e^1+e^2,e^2,e^1-e^2\},\Gamma^2_{e^1}=\{2e^2\};$$

$$\Gamma^1_{e^1-e^2}=\{e^1,e^2\},\Gamma^2_{e^1-e^2}=\{2e^1,2e^2\},\Gamma^3_{e^1-e^2}=\{e^1+e^2\};$$
 etc.

Define $G_{\mathcal{A}}(u,v) = G_{(\mathcal{A},c)}(u,v) = \sum_{\alpha \in \mathcal{A}} c_{\alpha}\alpha(u)\alpha(v)$, $u,v \in V$. Suppose $G_{\mathcal{A}}$ is non-degenerate so we have $G_{\mathcal{A}} \colon V \xrightarrow{\sim} V^*$. Let $\alpha^{\vee} = G_{\mathcal{A}}^{-1}(\alpha)$.

Definition (F.'08)

(A, c) is a trigonometric \vee -system if for any $\alpha \in A$ and for any α -series Γ_{α}^{s}

$$\sum_{\beta \in \Gamma_{\alpha}^{s}} c_{\beta} \beta(\alpha^{\vee}) \beta = \lambda \alpha$$

for some $\lambda \in \mathbb{C}$.

Proposition (F.'08)

Let (A, c) be a trigonometric \vee -system. Then $A^r = \{\sqrt{c_{\alpha}}\alpha : \alpha \in A\}$ is a rational \vee -system.

WDVV equations:

$$F_i F_j^{-1} F_k = F_k F_j^{-1} F_i, \quad 1 \le i, j, k \le n + 1,$$

where F_i is the $(n+1) \times (n+1)$ matrix, whose (pq)-entry is $\frac{\partial^3 F(x)}{\partial x_i \partial x_n \partial x_q}$ with $x_{n+1} = y$. $F_{n+1} = constant = 2diag(G_A, 1)$

Theorem (F.'08)

Suppose (A, c) is a trigonometric \vee -system. Suppose there exists $\mu \in \mathbb{C}$ such that

$$\sum_{\alpha,\beta\in\mathcal{A}_{+}} \left(c_{\alpha} c_{\beta} \left(\frac{1}{4} \mu^{2} \alpha(\beta^{\vee}) - 1 \right) \right) (\alpha \wedge \beta) (\alpha \wedge \beta) = 0.$$
 (1)

Then F^t satisfies WDVV.

Conversely, suppose that F^t satisfies WDVV. Then

- 1) Relation (1) holds.
- 2) Let $\alpha \in \mathcal{A}$ be such that $\mathcal{A} \cap \langle \alpha \rangle \subseteq \{\pm \alpha\}$. Then trigonometric V-system conditions for the series Γ_{α}^{s} are satisfied.

Operations with trigonometric V-systems/solutions

• Subsystems. Let W be a subspace in V^* . Let $\mathcal{B} = \mathcal{A} \cap W$. Then $\mathcal{B} \subset (W^{\vee})^*$.

Theorem (Alkadhem, F.)

Let \mathcal{A} be a trigonometric \vee -system. Then subsystem \mathcal{B} is a trigonometric \vee -system provided that $G_{\mathcal{B}}|_{W^{\vee}}$ is non-degenerate.

• **Restrictions.** Let \mathcal{B} be a subsystem in \mathcal{A} . Define $W_{\mathcal{B}} = \{x \in V : \beta(x) = 0 \ \forall \beta \in \mathcal{B}\} \subset V$. Consider resitriction $\pi_{\mathcal{B}}(\mathcal{A}) = \{\alpha|_{W_{\mathcal{B}}} : \alpha \in \mathcal{A}, \alpha|_{W_{\mathcal{B}}} \neq 0\} \subset W_{\mathcal{B}}^*$.

Theorem (Alkadhem, F.)

Let (A, c) define a solution of WDVV. Then restriction $(\pi_{\mathcal{B}}(A), c)$ also defines a trigonometric solution of WDVV provided that $G_{\mathcal{A}}|_{W_{\mathcal{B}}}$ is non-degenerate.

Examples

A Goal: to classify rational/trigonometric \vee -systems. Trigonometric \vee -systems are non-trivial in \mathbb{C}^2 but there are fewer solutions in higher dimensions.

Example (Martini, Hoevenaars'03; Alkadhem, F.)

Let \mathcal{R} be a crystallographic root system with Weyl group W. Let $c:\mathcal{R}\to\mathbb{C}$ be W-invariant. This is a trigonometric \vee -system which also defines a solution of WDVV for suitable μ .

Example

 $\mathcal{A}=\{e^i-e^j\colon 1\leq i< j\leq n\},\ c(e^i-e^j)=c_ic_j\ \text{is a trigonometric}\ \lor\text{-system for generic}\ c_i\in\mathbb{C}.$ It defines a solution of WDVV for a suitable value of μ .

Example (Alkadhem, F.)

Let $V \cong \mathbb{C}^4$. Let

$$\mathcal{A} = \{e^i : 1 \le i \le 4\} \cup \{e^i \pm e^j : 1 \le i < j \le 3\} \cup \{\frac{1}{2}(e^1 \pm e^2 \pm e^3 \pm e^4)\}.$$

Let

$$c(e^{i} \pm e^{j}) = r$$
, $c(\frac{1}{2}(e^{1} \pm e^{2} \pm e^{3} \pm e^{4})) = s$,

$$c(e^1, e^2, e^3) = 2r + s$$
, $c(e^4) = \frac{s(s-2r)}{4r+s}$.

Then (A, c) is a trigonometric \vee -system for generic $r, s \in \mathbb{C}$. It defines solution F^t with $\mu = 6\sqrt{3}(2r+s)(4r+s)^{-1/2}$.

Elliptic solutions

Let

$$f^{e}(z,\tau) = \frac{1}{(2\pi i)^{3}} (\mathcal{L}i_{3}(e^{2\pi iz},q) - \mathcal{L}i_{3}(1,q)),$$

 $q=e^{2\pi i \tau}$. Then

$$\frac{\partial^3 f^e}{\partial z^3} = -\frac{1}{2\pi i} \frac{\partial \log \theta_1(z, \tau)}{\partial z},$$

where

$$\theta_1(z,\tau) = -i(e^{\pi iz} - e^{-i\pi z})q^{1/8} \prod_{n=1}^{\infty} (1-q^n)(1-q^n e^{2\pi iz})(1-q^n e^{-2\pi iz});$$

$$(\frac{1}{2\pi i})^3 \frac{d^3}{d\tau^3} \mathcal{L}i_3(1,q) = \frac{1}{120} E_4(\tau).$$

Let

$$F^{e} = \frac{1}{2}\tau u^{2} - \frac{1}{2}u\sum_{i=0}^{n}x_{i}^{2} + \frac{1}{2}\sum_{i\neq j}^{n}f^{e}(x_{i} - x_{j}) - (n+1)\sum_{j=0}^{n}f^{e}(x_{i}),$$

where $x_0 = -\sum_{i=1}^{n} x_i$. Let $x_{n+1} = \tau, x_{n+2} = u$.

Theorem (Riley, Strachan'06)

Function F^e satisfies WDVV equations

$$F_i^e(F_j^e)^{-1}F_k^e = F_k^e(F_j^e)^{-1}F_i^e, \quad (1 \le i, j, k \le n+2).$$

Furtermore, F^e is almost dual to Bertola's Frobenius manifold on the space of orbits of Jacobi group on Jacobi forms on $V \oplus \mathbb{C} \oplus \mathbb{H}$.

It is expected that any trigonometric \vee -system (\mathcal{A}, c) gives rise to elliptic solution of WDVV in $V \oplus \mathbb{C}^2$ similar to F^e provided that

$$\sum_{\alpha \in A} c_{\alpha} \alpha(u)^4 \sim G_{\mathcal{A}}(u,u)^2.$$