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Sheaf cohomology I

If E is a B-module, we can construct a vector bundle E := G ×B E
over the flag variety X = G/B. An interesting invariant that
appears in many applications is the cohomology groups H i (X , E)
that have a G -module structure as well.

In particular, for any character λ : T → C∗ we get a line bundle
Lλ over G/B.

If E is a line bundle, the cohomology is given by the famous
Borel-Weil-Bott theorem (in characteristic zero). In order to state
it, we need to introduce some notations.
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Sheaf cohomology II

If P is the weight lattice, λ ∈ P and w ∈W , let
w · λ = w(λ+ ρ)− ρ, where 2ρ =

∑
α∈Φ+ α. We say that λ is

dot-regular if the stabilizer is trivial for the dot-action, and
dot-singular else.

Theorem (Borel-Weil-Bott)

I If λ ∈ P is dot-singular, H•(X ,Lλ) = 0.

I Otherwise, let i(λ) := `(w), where w ∈W is the unique
element such that w · λ ∈ P+. Then, Hk(X ,Lλ) = L(w · λ) if
k = i(λ) and 0 else.
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Sheaf cohomology III

Consider now the case of a general vector bundle E = G ×B E . To
compute its cohomology, we have a filtration of E by line bundles,
and hence only get a spectral sequence, where maps in general can
be difficult to compute.

This problem also is related to Hochschild cohomology of the small
quantum group, which was the initial motivation. We will give
more details later (if time permits).
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Bott’s theorem

Since H•(X , E) is a G -module, it is enough to compute
HomG (L(λ),H•(X , E)).

Theorem (Bott)

Let λ ∈ P+ and E a B-module. Then there is a vector space
isomorphism

HomG (L(λ),H•(X , E)) ∼= H•(b, h,E ⊗ L(λ)∗)

Where the right-hand side is given by equivariant Lie algebra
cohomology. The left-hand side is easily seen to be isomorphic to

H•(n,E ⊗ L(λ)∗)h

This boils down to finding a h-graded projective resolution of the
U(n)-module E ∗ ⊗ L(λ). We can use the BGG resolution to
compute it.
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The BGG resolution

Let g be a complex semisimple Lie algebra, h ⊂ b ⊂ g a Cartan
subalgebra contained in a Borel subalgebra. Let λ ∈ h∗.

Consider the one-dimensional U(b) module Cλ where h acts by λ
and n := [b, b] by zero. The Verma module associated to λ is the

module M(λ) := Ind
U(g)
U(b)Cλ.

Theorem (Bernstein-Gelfand-Gelfand, Rocha-Caridi)

If λ ∈ P+ there is an exact sequence

0→ M(w0·λ)→ · · · →
⊕

`(w)=k

M(w ·λ)→ · · · → M(λ)→ L(λ)→ 0
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Terms in the complex

Given a B-module E and λ ∈ P+, we now present the complex
BGG •(λ,E ) which computes HomG (L(λ),H•(X , E)).

We can interpret the BGG resolution as a h-graded free resolution
of the U(n)-module L(λ). It is in particular a projective resolution,
hence remains free when tensored with a finite dimensional
module.

In particular, BGG •(λ)⊗ E ∗ is a projective resolution of
L(λ)⊗ E ∗. The cohomology we wanted to compute is

Ext•n (C,E ⊗ L(λ)∗)h ∼= Ext•n (E ∗ ⊗ L(λ),C)h

hence we can use the BGG resolution.
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Terms in the complex II

Hence by definition, the terms of the complex are given by

HomU(n)(BGG •(λ)⊗ E ∗),C)

Now, for a Verma module M(µ), we have

HomU(n)(M(µ)⊗ E ∗,C) = HomU(n)(M(µ),E ) = E [µ]

which is simply the µ-weight space of E . Now recall that in the
BGG resolution, the weights that appears are on the form w · λ for
`(w) = k. Hence we get

BGG k(λ,E ) =
⊕

`(w)=k

E [w · λ]
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Maps between Verma modules

We quickly describe the maps between Verma modules.

By the PBW theorem we have M(µ) ∼= U(n) as vector spaces.
Hence, a map between Verma modules M(µ)→ M(µ′) can be
interpreted as a map U(n)→ U(n) and hence is determined by the
image of 1, which is an element fµ,µ′ ∈ U(n), corresponding to a
highest weight vector of weight µ.

In the BGG complex, the maps are hence scalars between
M(w · λ)→ M(w ′ · λ) for `(w ′) = `(w)− 1. It turns out that the
scalars are nonzero iff w ′ ≤ w (in the Bruhat order). Moreover,
the scalars can be picked in ±1.
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Maps in the BGG complex
Hence, the condition d2 = 0 becomes the following condition : for
each ”square” in the Bruhat graph

w ′

ε2

!!

w

ε1

>>

ε3

  

w ′′′

w ′′

ε4

==

We should have
∏

i εi = −1.

Proposition

A choice of signs exists, and different choices of signs give
isomorphic BGG complexes.

Now, we can just define the differential E [µ]→ E [µ′] as the action
by v 7→ ±fµ,µ′ · v (with appropriate choice of signs).
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Maps in the BGG complex II

Here is an example of signs choice for g = g2 :

• //

��

• //

��

• //

��

• //

��

•

��
•

??

��

•

• //

GG

• //

GG

• //

GG

• //

GG

•

??
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Signs in the Bruhat graph

Here is another example for type A3 :
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Signs in the Bruhat graph
Here is a more complicated example for type A5 :
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Description of the algorithm

We now present the main steps of the algorithm, given a B-module
E .

I Compute all λ ∈ P+ so that L(λ) appears in H•(X , E) (i.e
compute the dot-orbit of the set of weights of E ).

I Compute a choice of signs on the Bruhat graph.

I Compute monomials fw ,w ′ corresponding to w → w ′.

I Compute the cohomology.

Remark : even though most of the steps look easy, it is actually
computationally very expensive to do it, so a lot of programming
was about to optimize the code.
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Example

For example let us consider the b-module E = n for g = sl3. We
have E = Ω1

X and hence we know that H1(X , E) ∼= C2.

It is also easy to check that we only need to consider λ = 0.

The corresponding BGG complex is given by
BGG 0(0, n) = n[0] = 0,
BGG 1(0, n) = n[s1 · 0]⊕ n[s2 · 0] = n[−α1]⊕ n[−α2] and
BGG 2(0, n) = 0, i.e

0→ C⊕ C→ 0
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Applications

We implemented the algorithm on a computer, and obtained
several results, up to rank 5. We mention an application to
Hochschild cohomology of flag varieties.

Let X be a complex algebraic variety. The Hochschild cohomology
of X is the ring HH•(X ) := Ext•QCoh(X×X )(O∆,O∆)

Theorem (HKR)

There is a vector space isomorphism

HH•(X ) ∼= HT •(X ) := ⊕i ,jH
i (X ,∧jTX )

Theorem (Kontsevitch)

Twisting the HKR isomorphism by the Todd class induces an
algebra isomorphism HH•(X ) ∼= HT •(X ).
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Hochschild cohomology of flag variety

Theorem (H., Vorhaar)

If G has rank 3, X = G/B is ”Hochschild affine”, i.e
H i (X ,∧jTX ) = 0 for i > 0. For rank 4 and each type, there is a
parabolic P such that G/P is not Hochschild affine.

Corollary

For rank 3, the twist by the Todd class is trivial, hence we have an
isomorphism of Gerstenhaber algebras HH•(X ) ∼= HT •(X ) given
by the HKR map.

Certain class of flag varieties (for example Grassmannians) are
Hochschild affine. We hope that we can find a more explicit
description of HH•(X ) in future work.
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H i (X ,∧jTX ) = 0 for i > 0. For rank 4 and each type, there is a
parabolic P such that G/P is not Hochschild affine.

Corollary

For rank 3, the twist by the Todd class is trivial, hence we have an
isomorphism of Gerstenhaber algebras HH•(X ) ∼= HT •(X ) given
by the HKR map.

Certain class of flag varieties (for example Grassmannians) are
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Applications to small quantum group

We also mention an application to the small quantum group uq(g).
This is a finite-dimensional Hopf algebra introduced by Lusztig,
which is a quantum analogous of the first Frobenius kernel in
modular representation theory.

Theorem (Bezrukavnikov-Lachowska)

There is an isomorphism HH•(u0) ∼=
⊕

i+j+k=0 H
i (Ñ ,∧jT Ñ )k

where Ñ = T ∗(G/B) is the Springer resolution, and k is a certain
grading induced by a C∗-action and u0 is the principal block of
uq(g). One can use our algorithm to compute the right-hand side.
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The center of the small quantum group

Notice in particular that HH0(u0) is simply the center of u0. It is a
very interesting object, possibly connected to many other areas of
mathematics than representation theory. We mention a conjecture
by Lachowska-You :

Conjecture (Lachowska-You)

There is an isomorphism of bigraded W -modules :

(HH0(u0))g ∼= C[h⊕ h∗]/(C[h⊕ h∗]W+ )

This is true for sl2, sl3, sl4 and b2. We obtained the g2 case as well.

Theorem (H., Vorhaar)

The conjecture holds for g = g2.
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Concluding remarks

First, let us mention that the maps in the BGG complex
themselves are of interest, since they represent differential
operators between homogenous line bundles on G/B. We hope to
be able to relate our formula with existing work.

In particular, a generalisation of our algorithm to generalized
Verma modules and parabolic category O could give explicit
formulas for differential operators between homogeneous vector
bundles on any G/P that might be of interest.
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Thank you for your attention !
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