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Goal: Compute certain correlations of XYZ spin chain exactly
for finite systems.

“Compute” means express in terms of algebraic solutions to
Painlevé VI.

In statistical mechanics, exact results for finite size systems are
very rare, and mostly available for free-fermionic systems.

In our case, they probably exist because of supersymmetry.
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XYZ spin chain

Chain with L particles. Hilbert space (C2)⊗L.

Hamiltonian

HXYZ = −1

2

L∑
j=1

(
Jx σ

x
j σ

x
j+1 + Jy σ

y
j σ

y
j+1 + Jz σ

z
jσ

z
j+1

)
.

Jx, Jy, Jz real parameters.

σxj Pauli matrix acting on j-th tensor factor.

σxL+1 = σx1 periodic boundary conditions.

Hjalmar Rosengren 3/16



Supersymmetric/Combinatorial/Stroganov case

JxJy + JxJz + JyJz = 0

In this special case, Baxter (1972) found that ground state
energy (lowest eigenvalue of HXYZ)

E0 ∼ −
L

2
(Jx + Jy + Jz), L→∞.

Stroganov (“The importance of being odd”, 2001) observed that
if L is odd then

E0 = −L
2

(Jx + Jy + Jz).

Proved by Hagendorf and Liénardy (2018) using
supersymmetry.

HXYZ = E0 +QQ† +Q†Q

(on subspace of V ⊗L) where Q : V ⊗L → V ⊗(L+1).
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Combinatorics

For the supersymmetric XXZ chain (Jx = Jy = 1, Jz = −1/2)
there are deep connections to enumeration of alternating sign
matrices and plane partitions (Razumov–Stroganov. . . ).

For XYZ chain, very little is known,
but there are connections to
three-colourings (R. 2011,
Hietala in preparation)
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Correlation functions

We will assume
Periodic boundary
JxJy + JxJz + JyJz = 0 (SUSY case)
L = 2n+ 1 odd

|Ψ〉 ground state of HXYZ with even number of up spins.
We compute nearest neighbour correlations

Cx =
〈Ψ|σxj σxj+1|Ψ〉
〈Ψ|Ψ〉

, Cy = · · · , Cz = · · · .

Independent of j.
We give our result near the end of the talk,
but first we survey some earlier work.
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Transfer matrix and Q-operator

Baxter’s parametrized (Jx, Jy, Jz) by elliptic functions
depending on (η, τ). The SUSY case is η = π/3.

The transfer matrices T(u) of the 8-vertex model give a
one-parameter family of operators (depending also on (η, τ))
commuting with HXYZ.

Baxter also introduced Q-operators Q(u), which commute with
HXYZ and satisfy

T(u)Q(u) = θ1(u− η|τ)LQ(u+ 2η) + θ1(u+ η|τ)LQ(u− 2η).
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Eigenvalue of Q-operator

Bazhanov and Mangazeev (2005, 2006) studied the ground
state eigenvalue Q(u) of the Q-operator Q(u).

Under the same conditions (L = 2n+ 1 odd, periodic boundary,
JxJy + JxJz + JyJz = 0) they found intriguing connections to
two systems:

Painlevé VI equation (PVI)
Non-stationary Lamé or Quantum Painlevé VI equation
(QPVI)
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Painlevé VI
PVI is the 4-parameter family of nonlinear ODEs:

d2x

ds2
=

1

2

(
1

x
+

1

x− 1
+

1

x− s

)(
dx

ds

)2

−
(

1

t
+

1

t− 1
+

1

x− s

)
dx

ds

+
x(x− 1)(x− s)
s2(s− 1)2

(
α1 − α2

s

x2
+ α3

s− 1

(x− 1)2
+

(
α4 −

1

2

)
s(s− 1)

(x− s)2

)
.

This can be brought to a simpler, ellliptic, form.

Define τ = τ(s) so that

C[x, y]/(y2 − x(x− 1)(x− s)) ' C/(Z + τZ)

and let
x =

℘(q|τ)− e1
e2 − e1

,

(ej are values of ℘ at half-periods).
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Manin’s Hamiltonian

Manin (1998) showed that PVI is equivalent to a Hamiltonian
system

dp

dt
= −∂H

∂q
,

dq

dt
=
∂H

∂p
.

Here,
τ = 2πit,

H =
p2

2
− V (q, t),

V is Darboux(-Inozemtsev-Treibich-Verdier-· · · ) potential

V (q, t) =

4∑
j=1

αj℘(q − γj |2πit),

with αj parameters of PVI and γj half-periods.
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Quantum Painlevé VI

QPVI is the heat/Schrödinger equation with the same potential

ψt =
1

2
ψxx − V ψ,

V (x, t) =

4∑
j=1

αj℘(x− γj |2πit).

Appears in many contexts (Bernard, Etingof–Kirillov,
Suleimanov, Fateev–Litvinov–Neveu–Onofri, Nagoya,
Langmann–Takemura, Zabrodin–Zotov, Kolb,. . . ).
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Connection to PVI and QPVI
Bazhanov and Mangazeev found that a multiple of Q(u)
satisfies QPVI with parameters(

n(n+ 1)

2
,
n(n+ 1)

2
, 0, 0

)
.

They found empirically that at special values of u, Q(u) can be
expressed in terms of polynomials sn, s̄n, which satisfy
recursions like

sn+1sn−1 = (•)(sns′′n − (s′n)2) + (•)sns′n + (•)s2n.

They identified sn and s̄n with tau functions of PVI,
corresponding to particular algebraic solutions of PVI with
parameters(

n2

2
,
n2

2
, 0, 0

)
for sn,

(
n2

2
,
n2

2
,
1

2
,
1

2

)
for s̄n.
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Proofs

Rigorous proofs of these claims of Bazhanov and Mangazeev
were given in R. 2015, with a generalization to general
parameters αj = kj(kj + 1)/2, kj ∈ Z,

∑
j kj even.

Hjalmar Rosengren 13/16



Our main result
Parametrize

Jx = 1 + ζ, Jy = 1− ζ, Jz =
ζ2 − 1

2
.

As a function of τ , ζ is Hauptmodul for Γ0(12).
The correlation function Cz is

Cz =
ζ4 − 6ζ2 + 13

(ζ2 − 1)2
− ζ2

2(2n+ 1)2(ζ2 − 1)2
s̄n(ζ−2)s̄−n−1(ζ

−2)

sn(ζ−2)s−n−1(ζ−2)
.

Almost identical formulas for Cx and Cy.

If |ζ| ≤ 3 and n→∞, then the second term tends to 0
(probably as O(n−2)).

Our proof is based on a technical assumption related to the
Q-operator, which we have not proved.
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Connection to Painlevé VI
What does s̄ns̄−n−1/sns−n−1 mean for Painlevé VI?

It means that we take Okamoto’s PVI Hamiltonian (related to
Manin’s) with parameters(

(n+ 1/2)2

2
,
(n+ 1/2)2

2
, 0, 0

)
and plug in a solution to PVI with parameters(

n2

2
,
n2

2
, 0, 0

)
.

Recall also that the Q-operator eigenvalue satisfies QPVI with
parameters (

n(n+ 1)

2
,
n(n+ 1)

2
, 0, 0

)
.
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Our last remark

Manin (1998):

Although all three cases appear in our study, conceptual
understanding of the relation is still lacking.
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