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Gaussian g-binomial coefficients
- n+1 n m( N
Recurrent definition = +4q .
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e Weighted Pascal triangle (" )q . (n)q
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Ex: (g)q =14 q+29°+ q° + ¢* different from [6],.
Another example of “quantum 6" [3]4! = 1+ 2q + 2¢> + ¢°.

Conclusion: One does not quantize “6", but sequences...
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Our problem: quantize Q

Naive attempts: [é]q =

NB: The same formula (modulo rescaling).

A more reasonable approach:

S

where R and S are polynomials, both depend on r and s.

To do that organize QQ as sequence.



II Q-deformations

Farey, or Stern-Brocot tree
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Definition by recurrence

e Weighted triangles of the Farey graph and weighted Farey sum:

k—1
R R+q"R’ R
S S—‘,—qkS’ S’
Recurrence: defines g-deformation of every rational ¢ > 0.
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IIT Properties of g-rationals

° [ﬂq % R and S have positive integer coefficients.

Theorem (“Total positivity”): If £ > S,, then the polynomial
RS’ — SR’ has positive integer coefficients.

eR=1+Rg+...+R_1q" 1 +q".
Conjecture: Sequence of coeffs. of R (and S) are unimodal.
e Recurrence: [£ + l]q =q [g]q +1

extends the notion of g-rational to { < 0.
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Explicit formulas

e L is a continued fraction £ = [a1, a2, a3,...,32m].
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Explicit formulas

e L is a continued fraction £ = [a1, a2, a3,...,32m].
q™
Theorem. [g]q =[], + .
[az]q—1 + q33
[33]q + q—a4
[34]q71 +

e Matrix presentation: g-deformed generators of PSL(2,Z)

g 1 g 0 0 —qgt
Rq:z(o 1)’ L"::<q 1)’ S"::<1 0

NB: Quantum Teichmiiller theory (Chekhov-Fock,...).

anm_ o gR
Theorem. RJL3--- Ry™" L3 = (qS *>
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Counting on graphs

Pb: [1] =53 R=1+Rig+...+R, 19" +q"

Combinatorial meaning of coeff. R (and S) 7

t=[a1,...,a2m] == oriented graph (of type A):
0= 0+ 0=<0—=>0:+0=>0=<0::-0=0 0=0:--0—=>0
ai—1 az as asm—1

Def: k-closure: group of k vertices with no outgoing arrows.

Theorem. R, = # of k-closures.

2 3 2 3
Ex: % _ 1+1q:§iq42rq ° ° % _ 1+2c;14;cz7 +q o
N\ ¥ ¥ N\

O O O

Cor: Coeffs. of R count subreps. of maximal indecomposable rep.
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Main property: g-irrationals !

Pb: x > 0 irrational, what is... [x],?

(xn)n>1 a sequence of rationals converging to x;

[x1], . [l s [xs], 5 - - - sequence of rational functions.

Theorem. (i) Taylor series of [x,], stabilize as n grows.
(i) Limit Taylor series does not depend on the choice of sequence.

e Property [x + 1], = q[x], + 1 still holds (Z-action);

extends [x], for x <0, (Laurent series).



IV Examples of g-irrationals

The “Golden Ratio”

1
o= +2‘/§_[1,1,1,1,1,...].

is the simplest irrational number. The equation: p? = ¢ + 1.

The convergents of this continued fraction:

Fn+1
F,’

on=1[1,1,...,1] =
—_——
n
th

where F,, is the n*"" Fibonacci number.



g-deformation of Fibonacci

The g-deformations:

14+29+3¢2+3¢3+3¢*+¢°

[‘PG]Q 1+2q+2q2+2q3+q4 )

(6] 1+3q+5¢°+7¢° +7q* +6¢° + 4¢° + q'

SOSCI 1+3q+4q2+5q3+4q4+3q5+q6 )

[+po] 1+49+79° +10¢° +11¢° +109° + 7¢° + 49" + q°
pol, = .

1+49+6¢g2+7¢3+7¢*+5¢°+3¢°+q7
The coefficients: A123245 of OEIS and its mirror A079487.



The stabilization phenomenon

The Taylor series of the convergents:

[pel, = 1+9°—a>+29* —3¢° +3¢° —3¢" + 44°
—5q9+5q10—5q11+6q12"‘

[pel, = 1+¢*—q®+2q* —4q° +8¢° — 16" + 304°
—55q° + 103¢*% — 195¢™ + 36842 - - -

[pol, = 1+¢°—q*>+2q* —4¢° +8¢° — 17q" +37¢°
—82q% + 184¢10 — 414g'1 + 932412 ..

The coefficients stabilize!



g-deformed Golden Ratio

The g-deformation [¢] . is given by the series
[Py = 1+d*—q°+2¢* —4q° +8¢° —17¢" +37¢°
—82¢° + 185¢' — 423¢'! + 978¢'% — 2283¢™3
+5373g** — 12735 + 30372¢%° — 72832q"7
+175502q'® — 4247484¢'° 4 1032004¢°%° - - -

The coefficients coincide with the sequence A004148 of OEIS called
the generalized Catalan numbers.



g-deformed equations

The series [¢], satisfies the equation

alel? = (P +q-1)[¢], +1.

This is the g-analogue of ¢©? = ¢ + 1.

Generating function:

+q-1+vq*+2¢> — ¢ +2q+1
2q

P+qg—1+(?+3¢+1) (2 —q+1)
2q )

[¢l, =




The continued fraction

[¢], can be written as infinite continued fraction:
7’ 1
[Plg =1+ =1+
Gt ———— g+
1+

1 1
q+— g3+ —

NB: The celebrated Rogers-Ramanujan continued fraction

1




[, = 1+ g+ q®+ql0— g2 — g3 4 15 4 g6
—q® — 2% — g2 4 2¢%3 4 4g%* 4 ¢
4% — 4?8 — 2% 4 g3 4+ 553! 4 8¢32 4 3¢33
—3¢3* — 10g% — 12¢% — 5¢37 + 8¢38 + 19¢39 + 20¢%
2% — 18* — 32¢*3 — 25¢g™ + 31¢* + 51¢*7

+45¢* — 7¢* — 65¢°° — 94¢°" — 57¢°% +35¢%3 - -



Euler's number e =[2,1,2,1,1,4,1,1,6,1,1,8,1,1,10,.. ]
lel, = 1+q+4>—9°+2¢°-3¢" +3¢° - ¢°
_3q10 4 9q11 _ 17q12 4 25q13 _ 29q14 4 23q15 + 2q16
—54q17 + 134¢'® — 232¢1°
+320¢°%° — 347¢°! + 243¢%% + 71¢*3
—660g%* 4 15312 — 2575¢°°
+3504¢%" — 3804928 + 27479° + 4884 - -

Observations :
e the coefficients of g are smaller!
e the signs +, + appear with periodicity 7 !

2+Tk



More examples

Le “silver ratio” v/2 =[1,2,2,2,..] :

[\@] P14+ P4 g+ 1) (e — g+ 1)
q 2q2

satisfies g2 [\/ﬂz —(¢*—1) [\/ﬂq =q%+1.

Square toot of 5:

14 (¢® 4+ q” +2¢° 4+ 3¢° + 6¢*
[\/ﬂ B +3¢3+2¢° +q+1)(¢> — g +1)

q 2¢3 7

Compare with the golden ratio!
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