Holographic transform : the Rankin-Cohen case

Labriet Quentin

Université de Reims

Sochi, February 25, 2020

Branching laws

Let G be a group and G' a subgroup of G. We consider an irreducible unitary representation π of G and we are interested in the problem of the restriction of π to G', and the decomposition of π into irreducible representations ρ_{λ} of G'.

Branching laws

Let G be a group and G' a subgroup of G. We consider an irreducible unitary representation π of G and we are interested in the problem of the restriction of π to G', and the decomposition of π into irreducible representations ρ_{λ} of G'.

Branching law: multipcity free case

$$\pi|_{G'} \simeq \sum_{\lambda \in \hat{G'}} m_{\lambda} \rho_{\lambda} \text{ with } m_{\lambda} \in \{0;1\}$$

Branching laws

Let G be a group and G' a subgroup of G. We consider an irreducible unitary representation π of G and we are interested in the problem of the restriction of π to G', and the decomposition of π into irreducible representations ρ_{λ} of G'.

Branching law: multipcity free case

$$\pi|_{G'} \simeq \sum_{\lambda \in \hat{G'}} m_\lambda \rho_\lambda \text{ with } m_\lambda \in \{0;1\}$$

Multiplicity free branching law

$$\Leftrightarrow \dim \; Hom_{G'}(\pi|_{G'},\rho_{\lambda})=1$$

Symmetry breaking and holographic transform

In this context, a non zero element $T_{\lambda} \in Hom_{G'}(\pi|_{G'}, \rho_{\lambda})$ is called a symmetry breaking operator, and the collection $(T_{\lambda})_{\lambda \in \hat{G'}}$ is called a symmetry breaking transform.

Symmetry breaking and holographic transform

In this context, a non zero element $T_{\lambda} \in Hom_{G'}(\pi|_{G'}, \rho_{\lambda})$ is called a symmetry breaking operator, and the collection $(T_{\lambda})_{\lambda \in \hat{G'}}$ is called a symmetry breaking transform.

One can reverse the arrows in the previous definition, and a non zero element $P_{\lambda} \in Hom_{G'}\left(\rho_{\lambda}, \pi|_{G'}\right)$ is called an *holographic operator*, and the collection $\left(P_{\lambda}\right)_{\lambda \in \hat{G'}}$ is called an *holographic transform*.

Symmetry breaking and holographic transform

In this context, a non zero element $T_{\lambda} \in Hom_{G'}\left(\pi|_{G'}, \rho_{\lambda}\right)$ is called a symmetry breaking operator, and the collection $(T_{\lambda})_{\lambda \in \hat{G'}}$ is called a symmetry breaking transform.

→ Spectral analysis.

One can reverse the arrows in the previous definition, and a non zero element $P_{\lambda} \in Hom_{G'}\left(\rho_{\lambda}, \pi|_{G'}\right)$ is called an *holographic operator*, and the collection $(P_{\lambda})_{\lambda \in \hat{G'}}$ is called an *holographic transform*.

 \rightarrow Spectral synthesis.

Geometric setting

Holomorphic discrete series representation for $SL_2(\mathbb{R})$

Let $\lambda \in \mathbb{N} \backslash \{0;1\}$, and define the weighted Bergmann space on the Poincaré upper half-plane :

$$H^2_{\lambda}(\Pi) = \mathcal{O}(\Pi) \cap L^2(\Pi, y^{\lambda-1} \ dxdy)$$

We then define the holomorphic discrete series representation π_{λ} of $SL_2(\mathbb{R})$ for $f \in H^2_{\lambda}(\Pi)$ by the formula

$$\pi_{\lambda}(g)f(z) = (cz+d)^{-\lambda}f\left(\frac{az+b}{cz+d}\right)$$

for $g^{-1} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

Geometric setting

We consider the case $(G,G')=(SL_2(\mathbb{R})\times SL_2(\mathbb{R}),\Delta SL_2(\mathbb{R})).$ We are interested in the tensor product representation of two discrete series $\pi_{\lambda'}\otimes\pi_{\lambda''}$ which is considered as a representation of $SL_2(\mathbb{R})$ on the space $H^2_{\lambda'}(\Pi)\hat{\otimes} H^2_{\lambda''}(\Pi).$

Branching law

$$|\pi_{\lambda'}\otimes\pi_{\lambda''}|_{SL_2(\mathbb{R})}\simeq\sum_{l\in\mathbb{N}}\pi_{\lambda'+\lambda''+2l}$$

Multiplicity free branching law

$$\Leftrightarrow$$

$$\dim Hom_{SL_2(\mathbb{R})}(\pi_{\lambda'}\otimes\pi_{\lambda''}|_{SL_2(\mathbb{R})},\pi_{\lambda'''})=1$$

Geometric setting

Rankin-Cohen transform

Let $\lambda', \ \lambda'', \ \lambda''' \in \mathbb{N} \setminus \{0; 1\}$ such that $l = \frac{1}{2}(\lambda''' - \lambda' - \lambda'') \in \mathbb{N}$. For $f \in H^2_{\lambda'}(\Pi) \hat{\otimes} H^2_{\lambda''}(\Pi)$, we define the Rankin-Cohen brackets as :

Rankin-Cohen bi-differential operators

$$RC_{\lambda',\lambda''}^{\lambda'''}(f)(z) = \sum_{j=0}^l \frac{(-1)^j(\lambda'+l-j)_j(\lambda''+j)_{l-j}}{j!(l-j)!} \frac{\partial^l f}{\partial z_1^{l-j}\partial z_2^j}(z,z)$$

Each operator $RC^{\lambda'''}_{\lambda',\lambda''}$ is a symmetry breaking operator from $H^2_{\lambda'}(\Pi)\hat{\otimes}H^2_{\lambda''}(\Pi)$ to $H^2_{\lambda'''}(\Pi)$, and the family of all $RC^{\lambda'''}_{\lambda',\lambda''}$ defines a symmetry breaking transform.

Holographic inversion

Relative reproducing kernel

We define $K_{\lambda',\lambda''}^{\lambda''}$, called the relative reproducing kernel, for $w_2,\ w_1,\ z\in\Pi$:

$$K_{\lambda',\lambda''}^{\lambda'''}(z,w_1,w_2) = (w_2 - w_1)^l \left(\frac{w_1 - \bar{z}}{2i}\right)^{-(\lambda'+l)} \left(\frac{w_2 - \bar{z}}{2i}\right)^{-(\lambda''+l)}$$

Theorem (L.)

Set $\lambda',\ \lambda'',\ \lambda'''\in\mathbb{N}\backslash\{0;1\}$ such that $l=\frac{1}{2}(\lambda'''-\lambda'-\lambda'')\in\mathbb{N}$. Let $w_1,\ w_2\in\Pi$, and $g\in H^2_{\lambda'''}(\Pi)$. Then the adjoint operator $\left(RC^{\lambda'''}_{\lambda',\lambda''}\right)^*$ is given by :

$$(RC_{\lambda',\lambda''}^{\lambda'''})^*g(w_1,w_2) = C \int_{\Pi} g(z) K_{\lambda',\lambda''}^{\lambda'''}(z,w_1,w_2) d\mu(z)$$

And this is an holographic operator.

Holographic inversion

An integral operator

Set $\lambda',\ \lambda'',\ \lambda'''\in\mathbb{N}\backslash\{0;1\}$ such that $l=\frac{1}{2}(\lambda'''-\lambda'-\lambda'')\in\mathbb{N}$. Define the operator $\Psi_{\lambda',\lambda''}^{\lambda'''}$ on the space $H_{\lambda'''}(\Pi)$ by

$$\Psi_{\lambda',\lambda''}^{\lambda'''}(g)(w_1,w_2) = \frac{(w_1 - w_2)^l}{2^{\lambda' + \lambda'' + 2l - 1}l!} \int_{-1}^1 g(w(v))(1 - v)^{\lambda' + l - 1}(1 + v)^{\lambda'' + l - 1}dv$$

Theorem (Kobayashi, Pevzner)

The operator $\Psi^{\lambda'''}_{\lambda',\lambda''}$ is an holographic operator from $H_{\lambda'''}(\Pi)$ to $H^2_{\lambda'}(\Pi)\hat{\otimes} H^2_{\lambda''}(\Pi)$.

L^2 -model

Fourier transform

For $\lambda \in \mathbb{N} \setminus \{0.1\}$, we consider the space $L^2(\mathbb{R}^+, t^{1-\lambda} \ dt) := L^2_{\lambda}(\mathbb{R}^+)$ Then the Fourier transform defined, for $f \in L^2_{\lambda}(\mathbb{R}^+)$, by :

$$\mathcal{F}f(z) = \int_{\mathbb{R}^+} f(t)e^{itz} dt$$

is an one-to-one isometry (up to a scalar) from $L^2_\lambda(\mathbb{R}^+)$ to $H^2_\lambda(\Pi)$. This allows us to transport the holomorphic discrete series representation of $SL_2(\mathbb{R})$ on this space.

L^2 -model

We define the counterpart of $RC^{\lambda'''}_{\lambda',\lambda''}$ in this model thanks to the following commutative diagram

$$\begin{array}{cccc} L^2_{\lambda'}(\mathbb{R}^+) \hat{\otimes} L^2_{\lambda''}(\mathbb{R}^+) & \xrightarrow{RC^{\lambda'''}_{\lambda',\lambda''}} & & L^2_{\lambda'''}(\mathbb{R}^+) \\ & & \downarrow \mathcal{F} \\ & & \downarrow \mathcal{F} \\ & & \downarrow \mathcal{F} \\ & & H^2_{\lambda'}(\Pi) \hat{\otimes} H^2_{\lambda''}(\Pi) & \xrightarrow{RC^{\lambda'''}_{\lambda',\lambda''}} & & H^2_{\lambda'''}(\Pi) \end{array}$$

Symmetry breaking operator in the holomorphic and L^2 -model

Theorem (Kobayashi, Pevzner)

Set λ' , λ'' , $\lambda''' \in \mathbb{N} \setminus \{0; 1\}$ such that $l = \frac{1}{2}(\lambda''' - \lambda' - \lambda'') \in \mathbb{N}$. Let $F \in L^2_{\lambda',\lambda''}(\mathbb{R}^+ \times \mathbb{R}^+)$ then

$$\widehat{RC_{\lambda',\lambda''}^{\lambda'''}}F(t) = \frac{t^{l+1}}{2i^l} \int_{-1}^1 P_l^{\lambda'-1,\lambda''-1}(v) F\left(\frac{t}{2}(1-v), \frac{t}{2}(1+v)\right) dv$$

This operator is a symmetry breaking operator in the L^2 -model.

L^2 -model

For the holographic transform we have the following situation

$$\begin{array}{cccc} L^2_{\lambda'}(\mathbb{R}^+) \hat{\otimes} L^2_{\lambda''}(\mathbb{R}^+) & & & L^2_{\lambda'''}(\mathbb{R}^+) \\ & & & \downarrow & & & \downarrow \mathcal{F} \\ H^2_{\lambda'}(\Pi) \hat{\otimes} H^2_{\lambda''}(\Pi) & & & & H^2_{\lambda'''}(\Pi) \end{array}$$

Holographic operator in the holomorphic and L^2 -model

Theorem (Kobayashi, Pevzner)

Set $\lambda', \ \lambda'', \ \lambda''' \in \mathbb{N} \setminus \{0; 1\}$ such that $l = \frac{1}{2}(\lambda''' - \lambda' - \lambda'') \in \mathbb{N}$. We define the following operator which associate to a function g(t) defined on \mathbb{R}^+ a function of two variables on $\mathbb{R}^+ \times \mathbb{R}^+$:

$$\Phi_{\lambda',\lambda''}^{\lambda'''}g(x,y) = \frac{x^{\lambda'-1}y^{\lambda''-1}}{(x+y)^{\lambda'+\lambda''+l-1}} P_l^{\lambda'-1,\lambda''-1} \left(\frac{y-x}{x+y}\right) g(x+y)$$

Then $\Phi^{\lambda'''}_{\lambda',\lambda''}$ is an holographic operator from $L^2_{\lambda'''}(\mathbb{R}^+)$ to $L^2_{\lambda',\lambda''}(\mathbb{R}^+ \times \mathbb{R}^+)$

A stratification of the cone $\mathbb{R}^+ \times \mathbb{R}^+$

We use the following diffeomorphism θ from $\mathbb{R}^+ \times (-1,1)$ to $\mathbb{R}^+ \times \mathbb{R}^+$:

$$\theta(t,v) = (\frac{t}{2}(1-v), \frac{t}{2}(1+v))$$

A stratification of the cone $\mathbb{R}^+ \times \mathbb{R}^+$

We use the following diffeomorphism θ from $\mathbb{R}^+ \times (-1,1)$ to $\mathbb{R}^+ \times \mathbb{R}^+$:

$$\theta(t, v) = (\frac{t}{2}(1 - v), \frac{t}{2}(1 + v))$$

This corresponds to the following stratification of the cone $\mathbb{R}^+ \times \mathbb{R}^+$

Using this diffeomorphism, one can show the following isomorphism

$$L^{2}_{\lambda',\lambda''}(\mathbb{R}^{+} \times \mathbb{R}^{+})$$

$$\simeq L^{2}\left(\mathbb{R}^{+}, t^{\lambda'+\lambda''-1} dt\right) \hat{\otimes} L^{2}\left((-1;1), (1-v)^{\lambda'-1} (1+v)^{\lambda''-1} dv\right)$$

Using this diffeomorphism, one can show the following isomorphism

$$L^{2}_{\lambda',\lambda''}(\mathbb{R}^{+} \times \mathbb{R}^{+})$$

$$\simeq L^{2}\left(\mathbb{R}^{+}, t^{\lambda'+\lambda''-1} dt\right) \hat{\otimes} L^{2}\left((-1;1), (1-v)^{\lambda'-1}(1+v)^{\lambda''-1} dv\right)$$

$$\simeq \bigoplus_{l \geq 0} L^{2}\left(\mathbb{R}^{+}, t^{\lambda'+\lambda''-1} dt\right) \hat{\otimes} \mathbb{C} \cdot P_{l}^{\lambda'-1,\lambda''-1}(v)$$

Using this diffeomorphism, one can show the following isomorphism

$$L^{2}_{\lambda',\lambda''}(\mathbb{R}^{+} \times \mathbb{R}^{+})$$

$$\simeq L^{2}\left(\mathbb{R}^{+}, t^{\lambda'+\lambda''-1} dt\right) \hat{\otimes} L^{2}\left((-1;1), (1-v)^{\lambda'-1}(1+v)^{\lambda''-1} dv\right)$$

$$\simeq \bigoplus_{l \geq 0} L^{2}\left(\mathbb{R}^{+}, t^{\lambda'+\lambda''-1} dt\right) \hat{\otimes} \mathbb{C} \cdot P_{l}^{\lambda'-1,\lambda''-1}(v)$$

Theorem (L.)

The orthogonal projection on the space

 $L^2\left(\mathbb{R}^+,t^{\lambda'+\lambda''-1}\ dt\right)\hat{\otimes}\ \mathbb{C}\cdot P_l^{\lambda'-1,\lambda''-1}(v)$ is a symmetry breaking operator for the $SL_2(\mathbb{R})$ representation transported from the L^2 -model.

Thank you for your attention.