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Plan:
e Dispersionless integrability

e 3D dispersionless Hirota type equations F'(u;;) = 0
— Examples
— Summary of known results

— Hirota master-equation via genus three theta constants

e 3D integrable Lagrangians | f (v, Vay, Uay ) dxidaadrs
— Examples
— Summary of known results
— Integrable Lagrangians via Picard modular forms
General phenomenon: coefficients of (generic) dispersionless integrable PDEs in

3D can be expressed in terms of generalised hypergeometric functions/modular
forms (via Odesskii-Sokolov construction).



Dispersionless integrability

Hydrodynamic reductions: A PDE is said to be integrable if it possesses infinitely many

reductions to a collection of commuting 2D systems of hydrodynamic type.

Dispersionless Lax pairs: A PDE is said to be integrable if it possesses a dispersionless
Lax pair, that is, if it can be represented as the commutativity condition of two vector fields

depending on a spectral parameter.

Integrability ‘on solutions’: A PDE in 3D is said to be integrable if its characteristic variety

defines a conformal structure which is Einstein-Weyl on every solution.



3D dispersionless Hirota type equations
Dispersionless Hirota type equation is a second-order PDE of the form
where u(a:l, T2, xg) is a function of three independent variables, u;; = (e

Example 1. Dispersionless Kadomtsev-Petviashvili equation
15
Upt — =Upy — Uyy = 0.

Example 2. Boyer-Finley equation

’U/xx + uryy - GUtt — 0-



Modular example

Example 3. Equation of the form

Uzy 1 2
— —= — =h(ugz)u
Ut Yo 6 ( )

=0

xt
is integrable if and only if the coefficient h satisfies the Chazy equation
h/// + th// . S(h/)2 — 0

(Pavlov, 2003). Its general solution can be expressed in terms of the Eisenstein
series of weight 2 on the modular group SL(2,7Z): h(s) = eaz(is/m) where

eo(T) = 1—24201(71)627””7 =1-249—72¢°—96¢°+..., q=e*""".
n=1

This was one of the first examples where modular forms explicitly occurred in the

coefficients rather than solutions of integrable equations.



3D Hirota type equations: summary of known results

e The class of Hirota equations is invariant under the symplectic group Sp(6, R):
U — (AU + B)(CU + D)~ ..
Here U = Hess(u) = u;; is the Hessian matrix of the function w.

e The parameter space of integrable Hirota type equations is 21-dimensional.
Furthermore, the action of the equivalence group Sp(6, R) on the parameter
space is locally free. Since dim Sp(6,R) = 21, there exists a generic Hirota
master-equation generating an open 21-dimensional Sp(6, R)-orbit.

e Geometrically, Hirota type equation F'(u;;) = 0 can be viewed as the defining
equation of a hypersurface M? in the Lagrangian Grassmannian AS.

E.V. Ferapontov, L. Hadjikos and K.R. Khusnutdinova, Integrable equations of the dispersionless Hirota

type and hypersurfaces in the Lagrangian Grassmannian, IMRN (2010) 496-535.

Problem: construct Hirota master-equation corresponding to the open orbit.



3D Hirota master-equation

Theorem. The 3D Hirota master-equation is given by the formula
Om (uij) =0
where 9,,, is any genus 3 theta constant with an even characteristic m.

F. Clery, E.V. Ferapontov, Dispersionless Hirota equations and the genus 3 hyperelliptic divisor, Comm.

Math. Phys. (2019); DOI 10.1007/s00220-019-03549-7.
The corresponding hypersurface M?® c APisthe genus 3 hyperelliptic divisor.

We proved this theorem by uncovering geometry behind the Odesskii-Sokolov
construction that parametrises broad classes of dispersionless integrable systems

via generalised hypergeometric functions.

A.V. Odesskii, V.V. Sokolov: Integrable pseudopotentials related to generalized hypergeometric functions,

Selecta Math. 16 (2010) 145-172.



Open problems

e Find a purely computational proof that even theta constants satisfy the 3D
integrability conditions by deriving Sp(6, R)-invariant differential equations that
characterise theta constants.

e (lassify 3D integrable Hirota type equations corresponding to singular orbits of
lower dimension (degenerations of theta constants).



3D Integrable Lagrangians [ f(vy,, Vs, , Usy) dxidxadxs

Euler-Lagrange equation:

(fou, o + (fon, )zs + (fo, )as =0

Example 1. Dispersionless Kadomtsev-Petviashvili equation

— _ — 0 f _ . 1 3 .2
vwlfvs vl’lvwlxl U$2962 Y T Uﬂclvw2 val vazg'
Example 2. Boyer-Finley equation
’Ux3 - O . 2 2 2 ’Uw3
Vpizy + Vzozs — € “3Vpaps = 0, f= vy, + vy, — 2e7"s.

E.V. Ferapontov, K.R. Khusnutdinova and S.P. Tsarev, On a class of three-dimensional integrable
Lagrangians, Comm. Math. Phys. 261, N1 (2006) 225-243.

E.V. Ferapontov and A.V. Odesskii, Integrable Lagrangians and modular forms, J. Geom. Phys. 60, no.
6-8 (2010) 896-906.

D. Zagier, On a U(3,1)-automorphic form of Ferapontov-Odesskii, talk in Utrecht on 17 April 2009.



Modular example

Example 3. Lagrangian density f = v, v, (V.. ) gives the Euler-Lagrange

equation

(vng(vx;a));cl + (Ux19(vw3))m2 + (U:mvaszgl(vwg))xg = 0.
Integrability condition for g(z):
9"(9%9" —29(9")*) —9(9')*(9")* +299'9" 9" +8(¢')*9" — g°(¢"")* = 0.
The generic solution g(z) can be represented in the form

g(z) — Z 627Ti(k2_|_kl+l2)z —1 _|_6q_|_6q3 +6q4 s 12q4 4o
(k,1)eZ?

where q = e?™"% Note that g is a modular form of weight one and level three.
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Summary of known results
e The parameter space of integrable Lagrangian densities f is 20-dimensional.

e Integrability conditions for f are invariant under a 20-dimensional symmetry
group which acts on the parameter space with an open orbit.

Problem: construct master-Lagrangian corresponding to the open orbit.

We will see that this is related to the theory of Picard modular forms.

11



Integrability conditions

For a non-degenerate Lagrangian, the Euler-Lagrange equation is integrable (by
either of the techniques mentioned above) if and only if the Lagrangian density f
satisfies the relation

H
d*f = d3de + Zdet(dM).

Here d° f and d* f are the symmetric differentials of f while the Hessian H and

the 4 x 4 augmented Hessian matrix M are defined as

(0 £ fy f)

for  fyz  Jfes vy u

\ fo for fo fer )

Here (x,v, 2) = (Vg , Vs, , Uz, ). The non-degeneracy condition is equivalent to
H =£ 0. The system for f is in involution, and its solution space is 20-dimensional.
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Weierstrass sigma function ¢ and integers 5,

Let o be the Weierstrass sigma function of the elliptic curve y? = 423 — 1 (case

go =0, g3 = %). This function possesses a power series expansion

Z6k—|—1

o(z) =) _ B (6K + 1)

k>0

where B} are certain integers.

13



Lagrangian densities f = v, g(vy,, V)

The corresponding Euler-Lagrange equation is

(g)fﬁl + (legva)xQ + (’legvx?))x = 0.

3
Integrability conditions lead to an involutive system of five PDEs for g(y, z) which
are invariant under the ten-dimensional symmetry group:

lg(y,Z) ~

li(y,z) .
W2) (y.2) g=ag+p,

Yy = :
Iy, 2)

where [, [1, [5 are arbitrary (inhomogeneous) linear forms. This invariance allows

one to linearise the integrability conditions for g(y, 2).

14



Auxiliary hypergeometric system

Consider the auxiliary (Appell) hypergeometric system

1 hy, —h
hu Uy — = -1 ug,
172 3 U1 — u9
" _ h n Pus uz(u2 — 1) B Py ( 1 N 2 n 2 >
Ht 9uq(ug — 1) 3(ur —wug) ur(ug — 1) 3 Ul — Uy Ul up — 1/
. _ h n Py up(u; — 1) B Pos ( 1 n 2 n 2 )
vete ua(ug — 1)  3(u2 —u1) uz(ug — 1) 3 \us—ur wus wuzx—1/°

The geometry behind this system is the family of genus three Picard trigonal curves

r® =q(q—1)(g — u1)(qg — u2)

supplied with the holomorphic differential w = dq/’r. The corresponding periods,
b : :
h = fa w where a, b € {O, 1,00, uq, uz}, form a three-dimensional vector space

and satisfy the above (Picard-Fuchs) hypergeometric system (Picard, 1883).
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Generic solution g(y, z)
The generic solution g(y, z) can be represented in any of the 3 equivalent forms:

1. Parametric form:

_ hi(uy,usg) _ ho(uq,usz)
hs(uy,usz)’ hs(uy,usz)’

up(ug — 1)
uz(u; — 1)
where h; are three linearly independent solutions of the hypergeometric system
and F' = [s(s — 1)]72/3.

Y

= F(s), s =

2. Theta representation:

g(y, 2) =y + Z 0((: + Eg)y) 82711(1@2+kz+l2)z7 ¢ — oT/3
(k,1)E€Z2\0 e

3. Power series:

65+1 L 6k+1

Yy
~ 3" B;ByB; |
99 2) A TR (6 4 1) (6k + 1)
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Relation to Picard modular forms

The period map

y = hi(u,us) L ho(u1, us)
hs(ug,us)’ hs(uy,us)’

was inverted by Picard (1883):

iy, 2) 02y, 2)
1= 7 Ny U2 = —F—,
@O(yaz) 900(?/72:)
where ¢, are single-valued modular forms on a 2-dimensional complex ball
2Rey + |z|2 < 0 with respect to the Picard modular group
Iv=3]={g€U(2,1,Z[p]) : g = 1(modv/=3)}, p = €>™/3. Picard
modular forms were extensively studied by Holzapfel, Feustel, Finis, Shiga, Cléry
and van der Geer.
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Differential dg via Picard modular forms

There exists a simple expression of the differential dg is terms of ¢, :

dg = prp2(p2 — 1)deo + pop2(po — p2)dp1 + pop1 (1 — po)dp2
(2
where ( is a modular form defined as
¢? = popr1p2(p1 — w0) (02 — po) (w2 — ¥1).
Up to a constant factor, the differential dg coincides with the Eisenstein series E/; 1

which was known before from the theory of vector-valued Picard modular forms.

H. Shiga, On the representation of the Picard modular function by 6 constants, I, . Publ. Res. Inst.
Math. Sci. 24, no. 3 (1988) 311-360.

F. Cléry, G. van der Geer, Generators for modules of vector-valued Picard modular forms, Nagoya Math.
J. 212 (2013) 19-57.
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Open problems

e Classify integrable Lagrangian densities corresponding to singular orbits of

lower dimension (degenerations of Picard modular forms).
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