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Plan:

• Dispersionless integrability

• 3D dispersionless Hirota type equations F (uij) = 0

– Examples

– Summary of known results

– Hirota master-equation via genus three theta constants

• 3D integrable Lagrangians
∫
f(vx1 , vx2 , vx3) dx1dx2dx3

– Examples

– Summary of known results

– Integrable Lagrangians via Picard modular forms

General phenomenon: coefficients of (generic) dispersionless integrable PDEs in

3D can be expressed in terms of generalised hypergeometric functions/modular

forms (via Odesskii-Sokolov construction).
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Dispersionless integrability

Hydrodynamic reductions: A PDE is said to be integrable if it possesses infinitely many

reductions to a collection of commuting 2D systems of hydrodynamic type.

Dispersionless Lax pairs: A PDE is said to be integrable if it possesses a dispersionless

Lax pair, that is, if it can be represented as the commutativity condition of two vector fields

depending on a spectral parameter.

Integrability ‘on solutions’: A PDE in 3D is said to be integrable if its characteristic variety

defines a conformal structure which is Einstein-Weyl on every solution.
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3D dispersionless Hirota type equations

Dispersionless Hirota type equation is a second-order PDE of the form

F (uij) = 0

where u(x1, x2, x3) is a function of three independent variables, uij = uxixj
.

Example 1. Dispersionless Kadomtsev-Petviashvili equation

uxt −
1

2
u2xx − uyy = 0.

Example 2. Boyer-Finley equation

uxx + uyy − eutt = 0.
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Modular example

Example 3. Equation of the form

utt −
uxy
uxt
− 1

6
h(uxx)u2xt = 0

is integrable if and only if the coefficient h satisfies the Chazy equation

h′′′ + 2hh′′ − 3(h′)2 = 0

(Pavlov, 2003). Its general solution can be expressed in terms of the Eisenstein

series of weight 2 on the modular group SL(2,Z): h(s) = e2(is/π) where

e2(τ) = 1−24
∞∑
n=1

σ1(n)e2πinτ = 1−24 q−72 q2−96 q3+. . . , q = e2πiτ .

This was one of the first examples where modular forms explicitly occurred in the

coefficients rather than solutions of integrable equations.
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3D Hirota type equations: summary of known results

• The class of Hirota equations is invariant under the symplectic group Sp(6,R):

U 7→ (AU +B)(CU +D)−1.

Here U = Hess(u) = uij is the Hessian matrix of the function u.

• The parameter space of integrable Hirota type equations is 21-dimensional.

Furthermore, the action of the equivalence group Sp(6,R) on the parameter

space is locally free. Since dimSp(6,R) = 21, there exists a generic Hirota

master-equation generating an open 21-dimensional Sp(6,R)-orbit.

• Geometrically, Hirota type equation F (uij) = 0 can be viewed as the defining

equation of a hypersurface M5 in the Lagrangian Grassmannian Λ6.

E.V. Ferapontov, L. Hadjikos and K.R. Khusnutdinova, Integrable equations of the dispersionless Hirota

type and hypersurfaces in the Lagrangian Grassmannian, IMRN (2010) 496-535.

Problem: construct Hirota master-equation corresponding to the open orbit.

6



3D Hirota master-equation

Theorem. The 3D Hirota master-equation is given by the formula

ϑm(uij) = 0

where ϑm is any genus 3 theta constant with an even characteristic m.

F. Cléry, E.V. Ferapontov, Dispersionless Hirota equations and the genus 3 hyperelliptic divisor, Comm.

Math. Phys. (2019); DOI 10.1007/s00220-019-03549-7.

The corresponding hypersurface M5 ⊂ Λ6 is the genus 3 hyperelliptic divisor.

We proved this theorem by uncovering geometry behind the Odesskii-Sokolov

construction that parametrises broad classes of dispersionless integrable systems

via generalised hypergeometric functions.

A.V. Odesskii, V.V. Sokolov: Integrable pseudopotentials related to generalized hypergeometric functions,

Selecta Math. 16 (2010) 145-172.
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Open problems

• Find a purely computational proof that even theta constants satisfy the 3D

integrability conditions by deriving Sp(6,R)-invariant differential equations that

characterise theta constants.

• Classify 3D integrable Hirota type equations corresponding to singular orbits of

lower dimension (degenerations of theta constants).
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3D Integrable Lagrangians
∫
f(vx1 , vx2 , vx3) dx1dx2dx3

Euler-Lagrange equation:

(fvx1
)x1

+ (fvx2
)x2

+ (fvx3
)x3

= 0.

Example 1. Dispersionless Kadomtsev-Petviashvili equation

vx1x3 − vx1vx1x1 − vx2x2 = 0, f = vx1vx2 −
1

3
v3x1
− v2x2

.

Example 2. Boyer-Finley equation

vx1x1 + vx2x2 − evx3 vx3x3 = 0, f = v2x1
+ v2x2

− 2evx3 .

E.V. Ferapontov, K.R. Khusnutdinova and S.P. Tsarev, On a class of three-dimensional integrable

Lagrangians, Comm. Math. Phys. 261, N1 (2006) 225-243.

E.V. Ferapontov and A.V. Odesskii, Integrable Lagrangians and modular forms, J. Geom. Phys. 60, no.

6-8 (2010) 896-906.

D. Zagier, On a U(3,1)-automorphic form of Ferapontov-Odesskii, talk in Utrecht on 17 April 2009.
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Modular example

Example 3. Lagrangian density f = vx1
vx2

g(vx3
) gives the Euler-Lagrange

equation

(vx2
g(vx3

))x1
+ (vx1

g(vx3
))x2

+ (vx1
vx2

g′(vx3
))x3

= 0.

Integrability condition for g(z):

g′′′′(g2g′′−2g(g′)2)−9(g′)2(g′′)2 +2gg′g′′g′′′+8(g′)3g′′′−g2(g′′′)2 = 0.

The generic solution g(z) can be represented in the form

g(z) =
∑

(k,l)∈Z2

e2πi(k
2+kl+l2)z = 1 + 6q + 6q3 + 6q4 + 12q4 + ...

where q = e2πiz . Note that g is a modular form of weight one and level three.
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Summary of known results

• The parameter space of integrable Lagrangian densities f is 20-dimensional.

• Integrability conditions for f are invariant under a 20-dimensional symmetry

group which acts on the parameter space with an open orbit.

Problem: construct master-Lagrangian corresponding to the open orbit.

We will see that this is related to the theory of Picard modular forms.
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Integrability conditions

For a non-degenerate Lagrangian, the Euler-Lagrange equation is integrable (by

either of the techniques mentioned above) if and only if the Lagrangian density f

satisfies the relation

d4f = d3f
dH

H
+

3

H
det(dM).

Here d3f and d4f are the symmetric differentials of f while the Hessian H and

the 4× 4 augmented Hessian matrix M are defined as

H = det


fxx fxy fxz

fxy fyy fyz

fxz fyz fzz

 , M =


0 fx fy fz

fx fxx fxy fxz

fy fxy fyy fyz

fz fxz fyz fzz

 .

Here (x, y, z) = (vx1 , vx2 , vx3). The non-degeneracy condition is equivalent to

H 6= 0. The system for f is in involution, and its solution space is 20-dimensional.
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Weierstrass sigma function σ and integers Bk

Let σ be the Weierstrass sigma function of the elliptic curve y2 = 4x3 − 1
2 (case

g2 = 0, g3 = 1
2 ). This function possesses a power series expansion

σ(z) =
∑
k≥0

Bk
z6k+1

(6k + 1)!

where Bk are certain integers.
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Lagrangian densities f = vx1g(vx2 , vx3)

The corresponding Euler-Lagrange equation is

(g)x1
+
(
vx1

gvx2

)
x2

+
(
vx1gvx3

)
x3

= 0.

Integrability conditions lead to an involutive system of five PDEs for g(y, z) which

are invariant under the ten-dimensional symmetry group:

ỹ =
l1(y, z)

l(y, z)
, z̃ =

l2(y, z)

l(y, z)
, g̃ = αg + β,

where l, l1, l2 are arbitrary (inhomogeneous) linear forms. This invariance allows

one to linearise the integrability conditions for g(y, z).
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Auxiliary hypergeometric system

Consider the auxiliary (Appell) hypergeometric system

hu1u2 =
1

3

hu1 − hu2

u1 − u2
,

hu1u1 = −
h

9u1(u1 − 1)
+

hu2

3(u1 − u2)

u2(u2 − 1)

u1(u1 − 1)
−
hu1

3

(
1

u1 − u2
+

2

u1
+

2

u1 − 1

)
,

hu2u2 = −
h

9u2(u2 − 1)
+

hu1

3(u2 − u1)

u1(u1 − 1)

u2(u2 − 1)
−
hu2

3

(
1

u2 − u1
+

2

u2
+

2

u2 − 1

)
.

The geometry behind this system is the family of genus three Picard trigonal curves

r3 = q(q − 1)(q − u1)(q − u2)

supplied with the holomorphic differential ω = dq/r. The corresponding periods,

h =
∫ b
a
ω where a, b ∈ {0, 1,∞, u1, u2}, form a three-dimensional vector space

and satisfy the above (Picard-Fuchs) hypergeometric system (Picard, 1883).

15



Generic solution g(y, z)

The generic solution g(y, z) can be represented in any of the 3 equivalent forms:

1. Parametric form:

y =
h1(u1, u2)

h3(u1, u2)
, z =

h2(u1, u2)

h3(u1, u2)
, g = F (s), s =

u1(u2 − 1)

u2(u1 − 1)

where hi are three linearly independent solutions of the hypergeometric system

and F ′ = [s(s− 1)]−2/3.

2. Theta representation:

g(y, z) = y +
∑

(k,l)∈Z2\0

σ((k + εl)y)

k + εl
e2πi(k

2+kl+l2)z, ε = eπi/3.

3. Power series:

g(y, z) =
∑
j,k≥0

BjBkBj+k
y6j+1

(6j + 1)!

z6k+1

(6k + 1)!
.
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Relation to Picard modular forms

The period map

y =
h1(u1, u2)

h3(u1, u2)
, z =

h2(u1, u2)

h3(u1, u2)
,

was inverted by Picard (1883):

u1 =
ϕ1(y, z)

ϕ0(y, z)
, u2 =

ϕ2(y, z)

ϕ0(y, z)
,

where ϕν are single-valued modular forms on a 2-dimensional complex ball

2Rey + |z|2 < 0 with respect to the Picard modular group

Γ[
√
−3] = {g ∈ U(2, 1;Z[ρ]) : g ≡ 1(mod

√
−3)}, ρ = e2πi/3. Picard

modular forms were extensively studied by Holzapfel, Feustel, Finis, Shiga, Cléry

and van der Geer.
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Differential dg via Picard modular forms

There exists a simple expression of the differential dg is terms of ϕν :

dg =
ϕ1ϕ2(ϕ2 − ϕ1)dϕ0 + ϕ0ϕ2(ϕ0 − ϕ2)dϕ1 + ϕ0ϕ1(ϕ1 − ϕ0)dϕ2

ζ2

where ζ is a modular form defined as

ζ3 = ϕ0ϕ1ϕ2(ϕ1 − ϕ0)(ϕ2 − ϕ0)(ϕ2 − ϕ1).

Up to a constant factor, the differential dg coincides with the Eisenstein series E1,1

which was known before from the theory of vector-valued Picard modular forms.

H. Shiga, On the representation of the Picard modular function by θ constants, I, II. Publ. Res. Inst.

Math. Sci. 24, no. 3 (1988) 311-360.

F. Cléry, G. van der Geer, Generators for modules of vector-valued Picard modular forms, Nagoya Math.

J. 212 (2013) 19-57.
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Open problems

• Classify integrable Lagrangian densities corresponding to singular orbits of

lower dimension (degenerations of Picard modular forms).
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