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Elliptic sigma functions.

The standard Weierstrass model for a plane elliptic curve is

V = {(x , y) ∈ C2 : y2 = 4x3 − g2x − g3}. (1)

The discriminant of this curve is D = g3
2 − 27g2

3 .

The curve V is non-degenerate curve when D 6= 0.

Set
2ωk =

∮
ak

dx
y , 2ηk = −

∮
ak

xdx
y , k = 1, 2, (2)

where dx
y and xdx

y are basic differentials and ak are the basic cycles on the curve
such that

η1ω2 − ω1η2 = πi
2 .
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A non-degenerate curve V defines a lattice Γ ⊂ Z2 ⊂ C of rank 2
generated by 2ω1, 2ω2, with Im ω2

ω1
> 0.

An elliptic function is a meromorphic function on C such that

f (z + 2ωk) = f (z), k = 1, 2.

That is, it can be considered as a function on a complex torus T = C/Γ.

The torus T is known as the Jacobian Jac(V ) of the curve V .
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Weierstrass ℘-function.

Weierstrass ℘-function is the unique elliptic function ℘(z) = ℘(z ; g2, g3) on C
with poles only in lattice points such that lim

z→0

(
℘(z)− 1

z2

)
= 0.

The function ℘(z) is an even function and all its poles are double poles.
It defines a uniformization of the standard elliptic curve:

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3.

Corollary.
The function u(z) = 2℘(z) is a solution of the stationary KdV equation

u′′′ = 6uu′.
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Weierstrass ζ-function.

Weierstrass ζ-function is the odd meromorphic function ζ(z) = ζ(z ; g2, g3)
such that

ζ ′(z) = −℘(z) and lim
z→0

(
ζ(z)− 1

z

)
= 0.

The periodic properties of ζ ′(z):

ζ(z + 2ωk) = ζ(z) + 2ηk ,

and we have ηk = ζ(ωk), k = 1, 2.
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Weierstrass σ-function.

Weierstrass σ-function is the entire odd function σ(z) = σ(z ; g2, g3)
such that (

lnσ(z)
)′ = ζ(z) and lim

z→0

(
σ(z)

z

)
= 1.

The periodic properties of σ(z):

σ(z + 2ωk) = −σ(z) exp
(
2ηk(z + ωk)

)
, k = 1, 2.

The initial segment of the series has the form

σ(z) = z − g2
2

z5

5! − 6g3
z7

7! − 9g2
2
4

z9

9! − 18g2g3
z11

11! + . . .
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Lamé equation.

The elliptic Baker–Akhiezer function

Φ(z) = Φ(z ;α) = σ(α− z)
σ(z)σ(α) exp

(
ζ(α)z

)
(3)

represents a solution of Lamé equation(
d2

dz2 − 2℘(z)
)

Φ(z) = ℘(α)Φ(z). (4)
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Vector fields tangent to the discriminant.

Consider the fields on C2 with coordinates g2 and g3

l0 = 4g2
∂

∂g2
+ 6g3

∂

∂g3
, l2 = 6g3

∂

∂g2
+ 1

3g2
2
∂

∂g3
.

We have [l0, l2] = 2l2. Since l0D = 12D and l2D = 0, the fields l0 and l2
are tangent to the discriminant manifold {(g2, g3) ∈ C2 : D(g2, g3) = 0}.

Integral curves of the field l0.

Let τ be the natural parameter on the curves defined by the dynamical
system

(
l0 = ∂

∂τ

)
g ′2 = 4g2, g ′3 = 6g3.

Then g2(τ) = g2(0) exp(4τ), g3(τ) = g3(0) exp(6τ).
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Integral curves of the field l2.

Let t be the natural parameter on the curves defined by the dynamical
system

(
l2 = ∂

∂t
)

g ′2 = 6g3, g ′3 = 1
3g2

2 .

Then
g2(t) = 3℘(t + d ; 0, b3), g3(t) = 1

2℘
′(t + d ; 0, b3),

where b3 = 4
27D(g2(0), g3(0)) and d is the solution of the compatible system

of equations

℘(d ; 0, b3) = 1
3g2(0), ℘′(d ; 0, b3) = 2g3(0).
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The Weierstrass theorem.

Let
l0 = 4g2

∂

∂g2
+ 6g3

∂

∂g3
, l2 = 6g3

∂

∂g2
+ 1

3g2
2
∂

∂g3
,

H0 = z ∂

∂z − 1, H2 = 1
2
∂2

∂z2 + 1
24g2z2,

Q0 = H0 − l0, Q2 = H2 − l2.

Theorem.
The operators Q0 and Q2 annihilate the sigma-function:

Q0σ(z ; g2, g3) = 0, Q2σ(z ; g2, g3) = 0. (5)

The system of equations (5) in the nonholonomic frame
(
∂
∂z , l0, l2

)
uniquely determines the σ-function σ(z ; g2, g3) as the solution
with the initial condition σ(z ; 0, 0) = z .
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The heat equation.

Corollary.
The function ψ(z , t) such that

ψ(z , t) = exp
(
h(t)z2 + r(t)

)
σ
(
z , g2(t), g3(t)

)
(6)

for some functions r(t), h(t), g2(t) and g3(t) satisfies the heat equation

∂

∂t ψ(z , t) = 1
2
∂2

∂z2ψ(z , t) (7)

if and only if the functions r(t), h(t), g2(t) and g3(t) satisfy
the homogeneous polynomial dynamical system in C4

with coordinates h, r , g2, g3 :

h′ = 2h2 − 1
24g2, r ′ = 3h, (8)

g ′2 = 6g3 + 8hg2, g ′3 = 1
3g2

2 + 12hg3. (9)
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Chazy equation.

Theorem.
The functions r(t), h(t), g2(t) and g3(t) satisfy the dynamical system (8)–(9)
if and only if h(t) satisfies Chazy equation

h′′′ − 24hh′′ + 36(h′)2 = 0, (10)

and
g2 = −24(h′ − 2h2), g3 = −4(h′′ − 12h′h + 16h3), r ′ = 3h.

For initial data
h0 = h(0), h1 = h′(0), h2 = h′′(0)

there exists the unique solution of the Chazy equation (10).

Corollary.
For given (h0, h1, h2) there exists the unique up to a factor solution of
the heat equation (7) of the form (6).
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Burgers equation.

Consider Burgers equation

vt + vvz = 1
2vzz . (11)

Cole-Hopf transform of the function ψ(z , t) is

v(z , t) = −∂ lnψ(z , t)
∂z .

The following identity holds:

vt + vvz − 1
2 vzz = − ∂

∂z

(
ψt− 1

2ψzz
ψ

)
.

Corollary.
Let ψ(z , t) be a solution of the heat equation ψt = 1

2ψzz or the equation
ψt = 1

2ψzz + λψ where λ = const.
Then v(z , t) is a solution of Burgers equation (11).
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A solution of Burgers equation.

Let ψ(z , t) = exp
(
h(t)z2 + r(t)

)
σ
(
z , g2(t), g3(t)

)
, as before, be a solution

of the heat equation
∂

∂t ψ(z , t) = 1
2
∂2

∂z2ψ(z , t).

Theorem.
The function

v(z , t) = −∂ lnψ(z , t)
∂z = −2h(t)z − ζ

(
z ; g2(t), g3(t)

)
gives a solution of Burgers equation. Here h(t) is a solution
of Chazy equation

h′′′ − 24hh′′ + 36(h′)2 = 0,

and g2, g3 are given by

g2 = 24(2h2 − h′), g3 = −4(h′′ − 12h′h + 16h3).
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Klein problem.

The problem of construction of multidimensional σ-functions is a classic one.
In 1886, F.Klein proposed the following problem:
Modify multidimensional θ-function θ(u; ΓV ) in order to obtain an entire function
which is:
(1) independent of a choice of basis in the lattice ΓV ;
(2) covariant with respect to the Möbius transformations of the curve V .

On this problem, Klein published 3 works (1886–1890).

In 1923, a 3-volume collection of Klein’s scientific works was published.
In the preface to the works on the problem under discussion, he emphasized
that the theory of hyperelliptic functions is still far from complete.
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The covariance requirement (2) immediately led to the need to confine ourselves
to the class of hyperelliptic curves. But even this case caused artificial difficulties.

In his work (1903), H.F.Baker disregarded requirement (2) and showed that
in the case of curves of genus 2, it is possible to construct analogues
of elliptic σ-functions without using θ-functions of genus 2.

Since 1990, in a cycle of works, V.Buchstaber, V.Enolskii and D.Leykin
have been developed a theory of multidimensional σ-functions associated
with given models of plane algebraic curves.
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Our setting of problem.

Let Vλ =
{

(x , y) ∈ C2 : f (x , y ;λ) = 0
}

be a plane nonsingular algebraic curve
of genus g , where f (x , y ;λ) is a polynomial in x and y with the coefficient vector
λ = (λq1 , . . . , λqd ) ∈ Bg , where Bg is an open dense subset in Cd .

Denote by Γλ ⊂ Z2g ⊂ C2g the lattice of periods of holomorphic differentials
on Vλ.

Problem.
Construct an entire function σ(u;λ) such that:
(1) The decomposition of σ(u;λ) at the origin is given by the series in u
with polynomial coefficients in λ.
(2) For any k1 and k2, the function ℘k1,k2 (u;λ) = − ∂

∂uk1

∂
∂uk2

lnσ(u;λ) defines
a meromorphic function on Jac(Vλ) = Cg/Γλ.
(3) The function σ(u; 0) is a polynomial of a given form.
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In the case of hyperelliptic curves of genus g , in our works (1997-1999)
we constructed the desired σ-function σ(u;λ), where

u = (u1, . . . , u2g−1), λ = (λ4, . . . , λ4g+2).
On its basis we obtained the key results of the theory of hyperelliptic functions
of genus g > 1. (see below)

In subsequent works, for coprime n and s, n < s, we introduced a class
of plane (n, s)-curves of genus (n−1)(s−1)

2 with the coefficient vector (λq1 , . . . , λqd ),
where d = (n+1)(s+1)

2 −
[ s

n
]
− 3, and constructed the corresponding

σ-functions.

A family Vλ of (n, s)-curves is defined by the polynomials

f (x , y ;λ) = yn − x s −
∑
i,j
λq(i,j)x iy j ,

where 0 6 i < s − 1, 0 6 j < n − 1 and q(i , j) = ns − in − js > 0.

Hyperelliptic curves of genus g are (2, 2g + 1)-curves. The trigonal curves (3, s)
have genus g = 3m at s = 3m + 1 and genus g = 3m + 1 at s = 3m + 2, m > 0.
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Hyperelliptic curves.

Consider the curve

Vλ =
{

(x , y) ∈ C2 : y2 = f (x ;λ) = x2g+1 +
2g+1∑
k=2

λ2kx2g−k+1

}
, (12)

where g > 1 and λ = (λ4, . . . , λ4g+2) ∈ C2g are the parameters.

Set MD = {λ ∈ C2g : f (x ;λ) has multiple roots} and B = Bg = C2g \MD.

For any λ ∈ B we have the Jacobian variety Jac(Vλ) = Cg/Γλ and
the field of meromorphic functions Fλ on Jac(Vλ).
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Arnold’s convolution.

Let g ∈ N. Consider the space C2g+1 with coordinates ξ = (ξ1, . . . , ξ2g+1). Let

H = {ξ ∈ C2g+1 :
2g+1∑
k=1

ξk = 0}.

The permutation group S2g+1 of coordinates of C2g+1 corresponds to the action
of the group A2g ⊂ S2g+1 on H. We associate with each vector ξ ∈ H
the polynomial∏

k(x + ξk) = x2g+1 + λ4x2g−1 + λ6x2g−2 + . . .+ λ4gx + λ4g+2.

We obtain C2g ∼= H/A2g with coordinates (λ4, . . . , λ4g+2).

Let π : H → C2g be the canonical projection and a = a(λ), b = b(λ) be
functions on C2g .

Definition. Arnold’s convolution
The formula π∗(a ∗ b) = 〈∇π∗a,∇π∗b〉 gives the function a ∗ b = (a ∗ b)(λ),
where 〈·, ·〉 is Euclidean scalar product, and ∇ is the gradient in C2g .

V. M. Buchstaber Hyperelliptic sigma functions 20 / 38



Polynomial Lie algebra.

Set T2k,2m(λ) = λ2k ∗ λ2m, 2 6 k,m 6 2g + 1, and

`2i =
2g+1∑
s=2

T2i+2,2s−2
∂

∂λ2s
, i = 0, . . . , 2g − 1.

We have obtained 2g-polynomial vector fields on C2g that are linearly
independent at any point of B = C2g \MD and are tangent
to the discriminant hypersurface MD .

The vector fields {`2i , i = 0, . . . , 2g − 1} generate the graded polynomial
Lie algebra Lg .

Let c2s
2i,2j(λ) be the structural polynomials of Lg . We have

[`2i , `2j ] =
2g−1∑
s=0

c2s
2i,2j(λ)`2s .
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The hyperelliptic σ-function of genus g .

Theorem.
For any g > 1, there exists the function σ(u, λ) such that:
(a) σ(u, λ) is an entire quasiperiodic function of u ∈ Cg and λ ∈ B = C2g \MD .

(b) ∂2i−1∂2j−1 log σ(u, λ) = −℘2i−1,2j−1(u, λ) ∈ Fλ whenever λ ∈ B,
where ∂2i−1 = ∂

∂u2i−1
and i , j = 1, . . . , g .

(c) σ(u; 0) coincides with Adler-Moser polynomial up to a constant factor.

(d) σ(u, λ) is a solution of the system Q2jσ(u, λ) = 0, j = 0, . . . , 2g − 1,
where Q2j = `2j − 1

2 H2j − δ2j(λ), with `2j ∈ Lg and

H2j = αkl
j (λ)∂2k−1∂2l−1 + 2βl

jk(λ)u2k−1∂2l−1 + γjkl (λ)u2k−1u2l−1,

δ2j(λ) = 1
8`2j log det T (λ) + 1

2β
k
jk(λ),

where the summation from 1 to 2g extends over the repeated indices.
Here αkl

j (λ) = αlk
j (λ), βl

jk(λ) and γjkl (λ) = γjlk(λ) are polynomials of λ.
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The annihilators Q2j of the σ-function
and a quantum oscillator.

Write the system of equations Q2jσ(u, λ) = 0, j = 1, . . . , 2g , in the form

of Schrödinger equations `2j(σ) =
{

1
2 H2j + δ2j(λ)

}
σ,

of a multidimensional quantum harmonic oscillator with multiple ‘times’.

The formalism of quantum oscillator:
H2j is a set of ‘quadratic Hamiltonians’,
`2j are derivatives over ‘times’,
δ2j is ‘the energy of an oscillator mode’.

The realization of the sigma-function in the form of an average
of the ‘ground state wave-function’ (a multidimensional Gaussian function) over
a lattice suggests a natural interpretation of sigma-function
as the ‘wave-function of the coherent state’ of the oscillator.
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Lie algebras of Schrödinger operators.

Let Q2j = `2j − 1
2 H2j − δ2j(λ) be our Schrödinger operators.

Theorem.
The operators Q2j , j = 0, . . . , 2g − 1, on functions in u and λ satisfy
the commutation relations

[Q2i ,Q2j ] =
2g−1∑
s=0

c2s
2i,2j(λ)Q2s

where c2s
2i,2j(λ) are the structural polynomials of the polynomial Lie algebra Lg .
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We denote by π : Ug → Bg the universal bundle of Jacobian varieties
Jλ = Jac(Vλ) of hyperelliptic curves.
Let us consider the mapping ϕ : Bg × Cg → Ug such that

Bg × Cg ϕ−−−−→ Ugy y
Bg Bg

,

which defines the projection λ× Cg → Cg/Γλ for any λ ∈ Bg .

We denote by F = Fg the field of functions on Ug such that for any f ∈ F
the function ϕ∗(f ) is meromorphic, and its restriction to the fiber Jλ is
an Abelian function for any point λ ∈ Bg , e.i. f (u + 2Ω) = f (u)
for any 2Ω ∈ Γλ.
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Let u = t, t1 = x , f ′(t) = ∂
∂x f (t), ∂2k−1 = ∂

∂t2k−1
, and

ω =
(

j1 . . . js
2k1 − 1 . . . 2ks − 1

)
where 1 6 k1 < . . . < ks , 1 6 s 6 g , jq > 0, q = 1, . . . , s, and j1 + . . .+ js > 2.
Set

℘ω = ℘ω(t) = −∂j1
2k1−1 · · · ∂

js
2ks−1 lnσ(t). (13)

Let P denote the subring over Q in the field F generated by the functions ℘ω
for all ω described above.

Theorem.
There exists an isomorphism

P = Q [℘(1), . . . , ℘(g)] ,

where ℘(k) = (℘2k , ℘
′
2k , ℘

′′
2k) and ℘2k = −∂1∂2k−1 lnσ(t).
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Let ℘2i−1,2k−1 = ℘2i−1,2k−1(t) = −∂2i−1∂2k−1 lnσ(t) where i 6= 1 or k 6= 1.

Theorem.
All algebraic relations between hyperelliptic functions ℘ω of genus g follow
from the relations which, in our notations, have the form

℘′′2i = 6(℘2i+2 + ℘2℘2i )− 2(℘3,2i−1 − λ2i+2δi,1). (14)

℘′2i℘
′
2k = 4(℘2i℘2k+2 + ℘2i+2℘2k + ℘2℘2i℘2k + ℘2i+1,2k+1)−

− 2(℘2i℘3,2k−1 + ℘2k℘3,2i−1 + ℘2i−1,2k+3 + ℘2i+3,2k−1)+
+ 2(λ2i+2℘2kδi,1 + λ2k+2℘2iδk,1) + 2λ2(i+j+1)(2δi,k + δi,k−1 + δi−1,k). (15)

Here δi,k is the Kronecker symbol, deg δi,k = 0.
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Corollary.
For all g > 1, we have the following relations:
1. Setting i = 1 in (14), we obtain

℘′′2 = 6℘2
2 + 4℘4 + 2λ4. (16)

2. Setting i = 2 in (14), we obtain

℘′′4 = 6(℘2℘4 + ℘6)− 2℘3,3. (17)

3. Setting i = k = 1 in (15), we obtain

(℘′2)2 = 4
[
℘3

2 + (℘4 + λ4)℘2 + ℘3,3 − ℘6 + λ6
]
. (18)

We have ℘′2i = ∂2i−1℘2. Then from (16) we obtain:

Corollary.
For any g > 1, the function u = 2℘(t) is a solution of KdV equation

u′′′ = 6uu′ + 4u̇, where u̇ = 2∂3℘2.

V. M. Buchstaber Hyperelliptic sigma functions 28 / 38



Theorem.
The projection of the universal bundle

πg : Ug → Bg ⊂ C2g

is given by the polynomials λ2k = λ2k
(
℘(1), . . . , ℘(g)

)
∈ P, k = 2, . . . , 2g + 1

of degree at most 3.

Examples.

1. From (16), we obtain

λ4 = 1
2℘
′′
2 − 3℘2

2 − 2℘4.

2. From (17) and (18), we obtain

λ6 = 1
4(℘′2)2 −

[
℘3

2 + (℘4 + λ4)℘2 + ℘3,3 − ℘6
]

where ℘3,3 = 3(℘2℘4 + ℘6)− 1
2℘
′′
4 .
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The field F = Fg contains the coordinate ring Λ = Q[λ4, . . . , λ4g+2]
of the parameter space Bg .

Denote by PΛ the algebra of polynomials over Λ generated by the hyperelliptic
function ℘2 and all its derivatives with respect to x .

Theorem.
For all k > 1, the hyperelliptic functions ℘2k belong to the ring PΛ,
i.e. there exist differential polynomials Ψ2k(℘2, ℘

′
2, . . .) over the ring Λ

such that
2℘2k = Ψ2k(℘2, ℘

′
2, . . .).

Examples.
1. From (16), we obtain

4℘4 = ℘′′2 − 6℘2
2 − 2λ4.

Thus 2℘4 = Ψ4 = 1
2(℘′′2 − 6℘2

2 − 2λ4).

2. From (17) and (18), we obtain the polynomial Ψ6 using the system

6℘6 − 2℘3,3 = ℘′′4 − 6℘2℘4;
4℘6 − 4℘3,3 = 4℘3

2 + 4(℘4 + λ4)℘2 − (℘′2)2 + 4λ6.
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Korteweg-de Vries equation.

KdV : Ut = 6UUx − Uxxx , where U = U(x , t).

Set: x = t1, ∂1 = ∂

∂t1
,

t = t3, ∂3 = ∂

∂t3
Φ2 = U(t1, t3).

There is a differential conservation law

∂3Φ2 = ∂1Φ4, where Φ4 = 3Φ2
2 − ∂2

1Φ2.

The equation ∂3Φ2 = 0 is the stationary KdV equation where Φ2 = U(t1)
and we obtain ∂2

1Φ2 = 3Φ2
2 + α4.

In the case Φ2 = U(t1 − α2t3) we have the equation of travelling wave
∂2

1Φ2 = 3Φ2
2 + α2Φ2 + α4.

Here α2 and α4 are constants.
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Lenard operator and differential polynomials.

Let U = U(t) be an infinitely differentiable function, t = (t1, t3, . . . , t2k−1, . . .).
Set ∂ = ∂

∂t1
and f ′(t) = ∂f (t).

Definition.
The operator L = −∂2 + 2u + u′∂−1 is called Lenard operator.

Set Φ2 = U and define Φ2k , k > 1, by the recursion

∂Φ2k+2 = L∂Φ2k . (19)

Example. Φ4 = 3U2 − U ′′.

Theorem.
Formula (19) defines the differential polynomials Φ2k(U,U ′, . . . ,U(2k−2)).

Example. Φ6 = 10U3 − 10UU ′′ − 5(U ′)2 + U(4).
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Hierarchy of Korteweg-de Vries equation.

Let U(t) be a solution of KdV equation

U ′′′ = 6UU ′ − U̇

where U ′(t) = ∂1U(t) and U̇(t) = ∂3U(t).

Theorem.
Set U(t) = Φ2. Then the family of differential conservation laws

∂2k−1Φ2 = ∂1Φ2k , k = 2, 3, . . .

is equivalent to the hierarchy of KdV equation for the function U(t).
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Hierarchy of Korteweg-de Vries equation
in the class of functions on g variables.

Let us consider a meromorphic function u(t1, . . . , t2g−1) on Cg .
Dependence on higher times is given by the formula

U(t) = u
(

t1 −
∑
k>g

α1,2k−1t2k−1, . . . , t2g−1 −
∑
k>g

α2g−1,2k−1t2k−1

)
,

where αi,j are constants.

Theorem.
Hierarchy

∂2k−1Φ2 = ∂1Φ2k , k = 2, 3, . . .

is equivalent to g-stationary hierarchy of KdV equation for the function U(t)
and Φ2k are as above.
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We have 2℘2k(t;λ) = Ψ2k(℘2, ℘
′
2, . . .), where t = (t1, . . . , t2g−1)

and k = 1, . . . , g (see slide 28).

Theorem.
For any g > 1, the hyperelliptic function of genus g

u(t1, . . . , t2g−1) = 2℘2(t;λ)

satisfies g-stationary hierarchy of KdV equation.

Corollary.
There exists the formula

Ψ2k =
k∑

i=0
α2i Φ2k−2i

where α0 = (−1)k−14k−1 and α2i ∈ Λ = Q[λ4, . . . , λ4g+2].

Example. Ψ4 = −4Φ4 − λ4.
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THANK YOU FOR ATTENTION!
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