
1. Artin algebras and deformation functors

Let k be a field. Recall that a commutative algebra A over k is called Artinian if
any descending chain of ideals stabilizes. An Artin algenra A is called local if it is a
local ring with residue field k, we denote by mA ⊂ A the maximal ideal of A.

Remark 1.1. Algebra A is Artinian iff dimA <∞ and A is local.

Remark 1.2. Every Artin algebra is Noetherian.

Lemma 1.3. We have mN
A = 0 for N � 0.

Proof. Indeed by Krull’s intersection theorem we have
⋂
i∈Z>0

mi
A = 0 and now the

claim follows from the descending property applied to the ideals mi
A. �

We denote by Artk the category of local Artin k-algebras A with residue field k.
The main example for us will be A = k[ε]/ε2.

Definition 1.4. A deformation functor is a covariant functor D : Artk → Set such
that D(k) = {∗}, where {∗} is some fixed one-element set.

Let us give some examples of deformation functors.

Definition 1.5. For any scheme X we define a functor of points hX : Artk → Set
given by A 7→ Maps(SpecA,X). If X = SpecR then hR(A) = Mor(R,A).

Definition 1.6. Let B � A be a surjection with kernel K, A,B ∈ Artk. We say

0→ K → B → A→ 0

is a small extension if mBK = 0.

The simplest example is A = k, B = k[ε]/ε2, K = (ε).

Remark 1.7. Let N be a module over A, we can associate to it the following ring:
A∗N , as a vector space we have A∗N := A⊕N and the ring structure is the following:
(a1, n1)(a2, n2) = (a1a2, a1n2 + a2n1). Note that N ⊂ A ∗ N is an ideal such that
N2 = 0. Note also that A ∗N = A⊕ εN/(ε2). Extensions A ∗N are called trivial.

Lemma 1.8. Any surjection B � A can be obtained as a composition of small exten-
sions.

Proof. Recall that K ⊂ mB is the kernel of our surjection π : B � A. Note that
by lemma 1.3 there exists N ∈ Z>0 such that mN

B = 0, hence, KN = 0. Set Bi :=
B/Ki, i = 1, . . . , N and note that B0 = A, BN = B. It follows from the definitions
that the natural surjections Bi � Bi−1 define small extensions. Now B � A is the
composition B = BN � BN−1 � . . .� B1 � B0 = A. �
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2 TANGENT-OBSTRUCTION COMPLEX TO MODULI PROBLEMS

Let R be a complete local k-algebra such that dimk(mR/m
2
R) = d <∞.

Lemma 1.9. There exists a surjection k[[x1, . . . , xd]]� R.

Proof. Recall that R is complete so we have the isomorphism R ∼−→ lim
←−

R/mN
R . It is

enough to construct compatible surjections k[[x1, . . . , xd]] � R/mN
R . This is an easy

inductive construction. �

Consider now a small extension B � A. Let us analyze the morphism hR(B) =
Mor(R,B)→ Mor(R,A) = hR(A).

1. Assume that R = k[[x1, . . . , xd]]. The morphism hR(B) → hR(A) is surjective
since if f ∈ Mor(R,A) is some morphism and [x̃i] := f(xi) then let x̃i ∈ B be any

liftings of [x̃i] and we can define f̃ : R → B by f̃(xi) = x̃i. It remain to describe the

fibers of the morphism hR(B) � hR(A). Note that two functions f̃1, f̃2 ∈ Mor(R,B)

restrict to the same function f ∈ Mor(R,A) iff the image of f̃1 − f̃2 lies in K ⊂ B. It

is easy to deduce from K2 = 0 that f̃1 − f̃2 : R → K is a derivation over k. Here the
structure of R-module on K comes from the homomorphism f : R→ A and the natural
action Ay K (again use that K2 = 0). To show this we just write

(f̃1 − f̃2)(ab) = f̃1(a)f̃1(b)− f̃2(a)f̃2(b) = f̃1(a)f̃2(b) + f̃1(b)f̃2(a)− 2f̃2(a)f̃2(b) =

= f̃2(b)(f̃1(a)− f̃2(a)) + f̃2(a)(f̃1(b)− f̃2(b)) = b · (f̃1 − f̃2)(a) + a · (f̃1 − f̃2)(b),

in the second equality we use that (f̃1− f̃2)(a)(f̃1− f̃2)(b) = 0 since K2 = 0. Note now

that f̃1−f̃2 is uniquely determined by its restriction to mS and moreover (f̃1−f̃2)(m2
R) ⊂

mBK = 0 so we conclude that f̃1−f̃2 is uniquely determined by its restriction to mR/m
2
R.

We obtain the following exact sequence

Hom(mR/m
2
R,K)→ hR(B)→ hR(A)→ 0

Note that we have the identification Hom(mR/m
2
R,K) = (mR/m

2
R)∗ ⊗K.

2. Consider now the case of general R. By Lemma (1.9) we have a surjection

π : S := k[[x1, . . . , xd]] � R which induces an isomorphism mS/m
2
S
∼−→mR/m

2
R. We

set I := kerπ and note that I ⊂ m2
S . In the same way as above it is easy to see

that the kernel of the map Mor(R,B)→ Mor(R,A) identifies with Hom(mR/m
2
R,K) =

(mR/mR)∗⊗K. We can now define some space and a morphism ob such that f ∈ hR(A)

has a lifting f̃ iff ob(f) = 0. Pick f ∈ hR(A) and consider the morphism g := f ◦ π.

Note that the morphism Mor(S,B) → Mor(S,A) is surjective. The lifting f̃ exists iff
there exists a lifting g̃ ∈ Mor(S,B) such that g̃|I = 0. Note now that for any two liftings
g̃1, g̃2 ∈ Mor(S,B) the morphism g̃1 − g̃2 is a derivative and I ⊂ m2

S so g̃1|I = g̃2|I .
We conclude that the morphism f 7→ g̃|I ∈ Hom(I/mSI,K). So we obtain an exact
sequence

Hom(mR/m
2
R,K)→ hR(B)→ hR(A)→ Hom(I/mSI,K).

Note that mR/m
2
R is the fiber at the point mR of the cotangent sheaf ΩR and (I/mSI)∗

is exactly the fiber of normal sheaf NM/Y , where M := SpecR, Y := SpecS.
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Remark 1.10. In general if we have a closed embedding M ↪→ Y of some scheme into
the affine scheme then obstructions for M are NM/Y and deformations are controled by
TM.

Note that there exists a natural morphism TY |M → NM/Y which kernel is exactly

NM/Y . We have a morphism of complexes [TM
0−→ NM/Y ]→ [TY |M → NM/Y ] in degrees

−1, 0 which an isomorphism at the level of −1 and surjective at 0 cohomology. This is
a general property for obstruction theories to have a morphism to a so called tangent
complex which can be represented in derived category by the complex [TY |M → NM/Y ]
(note that cohomologies of [TY |M → NM/Y ] does not depend on the embedding of M
into Y ).

1.1. Let us now discuss local structure in terms of tangent/obstruction complex.
Let us now discuss the relation between a local structure of a moduli functor

M : Sch → Set at some point w ∈ M(k) and its tangent-obstruction TwM
0−→ ObwM.

There exists the natural homomorphism of algebras Ŝ•((ObwM)∗) → Ŝ•((TwM)∗)
called Kuranishi map. We will construct it later.

Remark 1.11. Recall that for a vector space E over k we denote by Ŝ•(E) the inverse

limit
⊕k=n

k=0 S
k(N).

Let us denote by M∧ the formal neighbourhood of the point w i.e. a functor Artk →
Set given by A 7→M(A)×M(A/mA) {w}.

Remark 1.12. Here we use the isomorphism k ∼−→A/m to obtain an identification

M(k) ∼−→M(A/mA) so w defines a point w ∈ M(A/mA) and M∧(A) is a fiber over
{w} of the natural morphism M(A)→M(A/mA). Note that when M is represented by
a scheme SpecR and m ⊂ R is the maximal ideal corresponding to a point w then M∧

is represented by R∧ := limR/mN . This follows from the fact that the homomorphism
from R∧ to Artin A is the same as a homomorphism from R to A such that m maps to
mA.

We assume that the functor M is (locally) represented by a scheme M and there is
a tangent/obstruction theory on M which induces on M∧ our tangent/obstruction for

Spec ÔM,w (as above).

Proposition 1.13. The functor M∧ is represented by the scheme Spec(Ŝ•(T ∗w))⊗Ŝ•(Ob∗
w)

k.

Proof. We can assume that M is represented by some scheme X of finite type. Note
that the question is local so we can assume that X = SpecR, where R is a complete
local ring such that dimk(mR/m

2
R) = d < ∞. Recall that in this case we have T =

Hom(mR/m
2
R,K), Ob = Hom(I/ImS ,K). Let us for simplicity assume that K = k so

we have T ∗ = mR/m
2
R, Ob∗ = I/ImS . Then the Kuranishi map

Ŝ•(I/ImS)→ Ŝ•(mR/m
2
R) = S

is induced by the natural embedding I ↪→ S. Note now that S ⊗Ŝ•(I/ImS) k is ex-

actly S/I ' R and the claim follows. Let us be more accurate here. Let f1, . . . , fn



4 TANGENT-OBSTRUCTION COMPLEX TO MODULI PROBLEMS

be generators of I ⊂ S. Let [fi] ∈ I/ImS be a basis in I/ImS and fi ∈ I be any
representatives. We claim that fi generate I as a module over S. This is an im-
medeate consequence of the Nakayama lemma. Now our morphism K is induced by
the morphism I/ImS → S, [fi] 7→ fi.

�

Let us now make an important comment. Recall that a functor F is called formally
smooth if the morphism F (B)→ F (A) is surjective for any simple extension 0→ K →
B → A→ 0. It is a standard fact that if F is represented by a scheme X of a finite type
then the formal smoothness of F is equivalent to the smoothness of X. Note now that
formal smoothness implies that there are no obstructions so by Proposition 1.13 locally
F should be isomorphic to TwF . This is exactly the case for smooth schemes. So we
actually already know Proposition 1.13 for functors F with no obstructions (formally
smooth functors).

2. Obstructions for G/H

Recall that the fiber of Ob at the point (C, p1, . . . , pn, f) ∈ M0,n,β(X) is
H1(C, f∗TX). Variety X is called convex if Ob = 0. Goal of this section is to show
that homogeneous spaces are convex (in particular, flag varieties) so the corresponding
moduli spaces of stable maps are smooth.

Proposition 2.1. Let G be an algebraic group and H ⊂ G is a subgroup. Then for
X = G/H the vector bundle TX is globally generated.

Proof. The action G y X induces a morphism inf : g → Γ(X, k). It follows from the
fact that the action of G is transitive that the image of inf generates TX. �

Proposition 2.2. Assume that X is such that TX is globally generated. Then X is
convex.

Proof. Consider some morphism µ : C → X. Our goal is to show that H1(f∗TX,C) =
0. Note that f∗TX is globally generated so we have a short exact sequence

0→ K → Γ(f∗TX,C)⊗ OC → f∗TX → 0

which induces the long exact sequence

→ Γ(f∗TX,C)⊗H1(C,OC)→ H1(C, f∗TX)→ H2(C,K)→ .

Note now that H2(C,K) = 0 since dimC = 1 and H1(C,OC) = H0(C,ωC) =
H0(C,OC(−2)) = 0. We conclude that H1(C, f∗TX) = 0. �

Remark 2.3. Note that every irreducible component of C is smooth (it is isomorphic
to P1) so the dualizing complex of C is ωC [1] = OC(−2)[1].

3. Main example of section of a vector bundle

Starting from a variety M together with a closed embedding ι : M ↪→ Am given by
some functions (f1, . . . , fn) we can associate to it the following complex of sheaves on
M:

TAm |M
σ−→ O⊕nM ,
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where σ is induced by dι. Let us now give the algebraic description of the morphism σ.
We give the description of the dual morphism σ∗ : O⊕nM → T∨Am |M. Let S be the ring of
global functions on Am and R be the ring of global functions on X. We have the natural
surjection S � R with kernel I generated by f1, . . . , fn. Note that T∗An |M = R ⊗S ΩS .
It follows from the definitions that the motphism σ∗ : R⊕n → R ⊗S ΩS is induced by
the composition R⊕n → I → R⊗S ΩS where the first morphism sends (0, . . . , 1, . . . , 0)
to fi and the second morphism is given by f 7→ 1⊗ df .

Remark 3.1. In slightly more general situation when we have a closed embedding of
M ↪→ Y as zeroes of some section of some vector bundle E → Y then we always have
a morphism TY |M → E|M induced by the composition TY |M → NM/Y ↪→ E|M.

Fix now a point x ∈ M. Our goal is to describe obstructions at this point. So
we can assume that R,S are local and complete with maximal ideals corresponding
to x. We claim that the obstructions lie in Ox := cokerσx. Consider the morphism
F : kn → S = Ŝ•(mS/m

2
S) given by (0, , . . . , 1, . . . , 0) 7→ fi. Note now that the induced

morphism kn → mS/m
2
S coincides with σ∗x after the identification (R ⊗S ΩS)x = k ⊗R

(R⊗SΩS) = k⊗SΩS = mS/m
2
S . Note also that the image of the morphism F generates

an ideal I.
Let us now start from a simple extension of Artin rings

0→ K → B → A→ 0

and consider a morphism ϕ : S/(F )→ A. We want extend it to a morphism S/(F )→ B.
Note that we always have an extension g : S → B of the composition S � S/(F )→ A.

It follows from the definitions that the morphism k⊕n
F−→ S

g−→ B factors through
o : k⊕n → K. Let ob(ϕ,A,B) be the image of o under the obvious morphism k⊕n⊗K →
O ⊗ K. Indeed the condition that ob(ϕ,A,B) is equivalent to the fact that the fact

that o : k⊕n → K lifts to the morphism h : mS/m
2
S → K and we denote by ĥ : S → B

the corresponding homomorphism of algebras. It remains to note that g − ĥ factors
through R = S/(F )→ B extending the morphism ϕ.

Remark 3.2. The fact that (g − ĥ)|(F ) = 0 is equivalent to g ◦ F = ĥ ◦ F but g ◦ F = o

which lifts to h and the claim follows. The fact that g − ĥ extends ϕ follows from the
definition of g and the fact that h maps to K.

So we see that for this exampe the tangent-obstruction complex is homologies of the
complex TY |M → E|M. Such obstruction theories are called perfect (when they from a
complex of locally trivial sheaves) and in these cases one can define virtual fundamental
class of M (in dimension rkE0 − rkE1 where E0 → E1 is our obstruction theory).

Note also that we have a natural morphism [TY |M → NM/Y ] → [TY |M → E|M]

induced by the morphisms TY |M
Id−→ TY |M, NM/Y

s−→ E|M and this morphism is an
isomorphism on 0 cohomologies and is injective on 1st cohomologies (people standatdly
consider dual complexes).
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4. Virtual fundamental class in our main example

Let M be the moduli functor of virtual dimension n (virtual dimension depends on
the (perfect) tangent/obstruction theory on M). Our goal is to define a fundamental
class of M which will be an element of An(M) (the n-th Chow group). There is a
homomorphism An(M) → HBM

2n (M,C) so one can think about our fundamental class
as about an element of Borel-Moore homology.

Remark 4.1. Let us recall the definition of Chow groups of scheme M. This is a quotient
of the group (over C) generated by subvarieties of M by rational equivalences i.e. if we
have a subvariety W ⊂M of dimension i+ 1 and a rational function f on W then the
divisor (f) of f should be equal to zero in Ai(M).

Remark 4.2. We recall that if M is a topological space then the Borel-Moore homology
HBM
• (M,C) can be defined as H•(M,M \M), where M is any compactification of M

(for example, one-point compactification).

Remark 4.3. Let us finally remark that for (possibly noncompact) manifold M there
exists an isomorphism HBM

i (M,C) ' HdimM−i(M,C).

4.1. Notations/definitions. Let us recall come notations. Let M ↪→ Y be a closed
embedding of schemes and I is the ideal definig M. Then we define NM/Y := (I/I2)∨,
this is a sheaf on M. We denote by NM/Y → M the corresponding scheme over M

which is defined as the relative spectrum SpecS•OM
(I/I2).

Remark 4.4. There is a general way to pass from a coherent sheaf E on a scheme X
to the correspondong total space E → X over X. Assume first that X = SpecA is an
affine scheme. Then we have E = M̃ for some A-module M (M = Γ(X,E)). Now we
can define E := Spec(S•A(M)), here S•A(M) :=

⊕
i>0 S

i
A(M) and SiA(M) is the quotient

of the tensor product M ⊗AM ⊗A . . .⊗AM and S0
A(M) = A. Note that we have the

natural morphism E → X, which corresponds to the embedding A = S0(M) ↪→ S•A(M).
We can apply the same construction to the sheaf E (using some affine covering of X)
and get the desired scheme E. Note that if E is locally trivial then E is the total space
of the vector bundle corresponding to E∨. Note also that the construction is functorial
in the following sence. If E, P are coherent sheaves on X and E → X, P → X are the
corresponding total spaces. Then any morphism E → P over OX induces a morphism
P → E of schemes over X (clear from the construction).

In more details: morphism E → P induces a morphism the morphism S•OX
(E) →

S•OX
(P ) and so a morphism P = SpecOX

S•OX
(P)→ SpecOX

S•OX
(E) = E.

We have the natural morphism of sheaves I/I2 → ΩY |M which induces the morphism
TY |M → NM/Y . Note that when the embedding M ↪→ Y is regular then the sheaf I/I2

is locally trivial and we have the identification I/I2 ∼−→ (I/I2)∨∨ so NM/Y is exactly the
normal bundle to M ⊂ Y .

Remark 4.5. Note that we have a short exact sequence of sheaves on M

0→ TM → TY |M → NM/Y
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and the morphism TY |M → NM/Y is surjective when M is smooth. In general we can

define T1
M to be the cokernel of this morphism. This sheaf is called a tangent sheaf

and it actually does not depend on the embedding M ↪→ Y . So in general we have the
following exact sequence of sheaves

0→ TM → TY |M → NM/Y → T1
M → 0.

4.2. Simple simple case. We start from the simplest case. Let E be a vector bundle
of rank r on a smooth variety A of dimension n and s ∈ Γ(A,E). Assume that M = Z(s)
the zero locus of s.

Recall that if P → M is a (real) vector bundle of rank k over a (smooth) variety
M then we have a canonically defined Euler class eu(P ) ∈ Hk(M,C) such that the
Poincare dual class PDM (eu(P )) ∈ HdimM−k(M,C) is the class of zeroes of a generic
section of P .

Let us return to our example. Recall that vdimM = dimY − rkE. The simplest
case is when s is generic so M is smooth and dimM = vdimM. Then we already know
that we must have [M]vir := [M] and the last can be thought as PDM(eu(0)). Note that
in terms of σ : TY |M → E|M this happens exactly when σ is surjective (i.e. Ob = 0).

Assume now that M is still smooth but has the wrong dimension (for example s = 0
and M = Y ). This is the case when section s takes values in some vector subbundle
E′ ⊂ E of rank r′ and is transverse to the zero section of E′ and (in C∞-setting) we
have a decomposition E = E′⊕ (E/E′). We see that s = (s′, 0) for some s′ ∈ Γ(A,E′).
Note that we can now deform (s′, 0) to a section (s′, ε), ε ∈ Γ(A,E/E′) with ε transverse
to the zero section of E/E′ and we see that our virtual class should be a class of generic
section on the bundle E/E′ i.e. can be defined as follows [M]vir := PDM(eu((E/E′)|M)).

Note now that the sheaf (E/E′)|M canonically identifies with cokerσ = Ob. So we
conclude that in this case we define [M]vir := PDM(eu(Ob)). This suggests us the
following definition when Ob is a vector bundle over M.

[M]vir := PDM(eu(Ob)).

Let us check that this class (in our example) will lie in the correct dimension (i.e. in
dimension vdimM = dimY − rkE). Indeed we have an exact sequence

0→ TM→ TY |M → E → Ob→ 0

so rk Ob = rkE+dimM−dimY i.e. eu(Ob) ∈ H2 rkE+2 dimM−2 dimY (M,C). It follows
that PD(eu(Ob)) ∈ H2 dimY−2 rkE(M,C) and that is it.

Recall that we want to intersect zero section of E → Y with a transverse section
of E. Topologically we know that the answer is always PDY (euE) but the problem is
that this is a class in cohomologies of Y not of M. So in general we want to construct
some element [M]vir ∈ H2 vdimM(M,C) such that its push-forward to H2 vdimM(M,C)
is PDY (euE). So we want to deform M inside itself. The idea is not to deform M

inside Y but to deform Y itself (to a certain cone) such that this deformation is trivial
being restricted to M ↪→ Y . There is a canonical construction of such a deformation
called a deformation to normal cone.
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4.3. Rees construction and normal cone. Let us now discuss some important
general construction (called Rees construction). Let A be a commutative algebra over
C. Assume that we are given an increasing filtration . . . ⊂ A−1 ⊂ A0 ⊂ A1 ⊂ on the
algebra A such that Ai · Aj ⊂ Ai+j . We can form the following algebra A~ over C[~],
A~ :=

⊕
i ~iAi and note that this is indeed an algebra with respect to the multiplication

ai~i ·aj~j = aiaj~i+j and ~i ∈ A~ for any i > 0 since 1 ∈ A0 ⊂ Ai. We obtain the family
π : SpecAh̄ → Spec(C[h̄]). Let us first of all note that A~ is ~-graded so the morphism
is actually C×-equivariant with respect to the standard action C× y A1. We conclude
that for any t 6= 0 the fiber π−1(t) identifies with π−1(1). Let us compute π−1(1).
By the definition it is the spectrum of the quotient

⊕
i ~iAi/(~ − 1) i.e. equals to∑

iAi = A. Let us now compute the fiber π−1(0). By the definition it is the spectrum
of the quotient

⊕
i ~iAi/(~) and it is easy to see that this algebra naturally identifies

with
⊕

iAi/Ai+1. We conclude that the family π deforms SpecA to Spec grA.
Starting from a closed embedding M ↪→ Y with defining ideal sheaf I we can define

a filtration in OY by Ii, where Ii = OY for i 6 0. In other words we should consider

. . .⊕ ~−2I2 ⊕ ~−1I⊕ OY ⊕ ~OY ⊕ . . . .

So we obtain the family Ỹ → A1 such that the fiber over t 6= 0 is isomorphic to Y and
the fiber over 0 is CM/Y (= Spec(⊕i>0I

i/Ii+i)). Note also that we have the embedding

M×A1 ↪→ Ỹ corresponding to the ideal
⊕

i<0 ~iIi (the quotient by this ideal is natually
OM[~]).

So we see that Y naturally deforms to CM/Y together with the embedding M ↪→ Y .
It is natural to assume that intersection does not depend on the deformation so we can
pass from the embedding M ↪→ Y to the embedding M ↪→ CM/Y .

4.4. General case of simple case. Recall that we denote by I ⊂ ON the ideal sheaf
of M and CM/Y := Spec(

⊕∞
i=0 I

i/Ii+1) and note that we have the natural surjection⊕∞
i=0 S

i(I/I2)�
⊕∞

i=0 I
i/Ii+1 which induces a closed embedding embedding CM/Y ↪→

NM/Y . We also have the natural embedding NM/Y ↪→ E|M (induced by s). Let us now
recall how the morphism NM/Y ↪→ E|M is constructed.

Recall that NM/Y = (I/I2)∨ and s defines a morphism of sheaves OY → E and the
dual morphism s : E∨ → OY . We claim that the image of this morphism is the ideal
sheaf I. It is enough to check this locally: when Y = SpecS and M = SpecR are
both affine, E = O⊕rY and s is then given by r functions fi ∈ S and the corresponding
morphism S → S⊕r sends s to (sf1, . . . , sf2) so the dual morphism S⊕r → S sends
(s1, . . . , sr) to f1s1 + . . . + frsr and its image is exactly I = (f1, . . . , fr) the ideal of
M ↪→ Y .

So we obtain a morphism E∨ → I which induces a morphism E∨|M � I/I2 of sheaves
on M. Note that this morphism is surjective! This can be checked locally using the
fact that fi generate the ideal I over S so [fi] ∈ I/I2 generate I/I2 over R = S/I.

The surjection E∨|M � I/I2 induces the desired embedding NM/Y ↪→ E|M. One
should note that the morphism TY |M → E that we have discussed at the previous
lecture can be described as follows. It is induced by the morphism of sheaves E∨ →
ΩY |M that is obtained as a composition of the morphisms E∨ � I/I2 → ΩY |M so (our



TANGENT-OBSTRUCTION COMPLEX TO MODULI PROBLEMS 9

fundamental map which controls deformations/obstructios) TY |M → E|M is exactly
the composition TY |M → NM/Y ↪→ E|M.

4.4.1. Completing the construction. So we are in the following situation: We have an
embedding CM/Y ↪→ E|M and E|M → M is the vector bundle over M . We can finally

define [M]vir := 0∗(CM/Y ) and we explain in the next section what does it mean.
Note now that in the case when s actually corresponds to some section (s′, 0)

4.5. Intersection with zero section in vector bundle. Intersection theory for
normal cones was developed in Fulton’s book and works as follows.

Let us recall the following proposition.

Proposition 4.6. Let E be a rank r vector bundle on X, p : E → X then the pull-back
homomorphism p∗ : Ak(X)→ Ak+r(E) is an isomorphism, here A corresponds to Chow
group.

Remark 4.7. Let us make a comment how to prove the surjectivity of the morphism
p∗. We use the induction on the dimension of X. We can always assume that X is
irreducible so there exists an open subset U ↪→ X such that E|U is trivial (so p∗|U is
an isomorphism). Set Z := X \ U and denote by ι : Z ↪→ X the closed embedding and
by j : U ↪→ X the open embedding. We have the following exact sequence

Ak(Z)
ι∗−→ Ak(X)

j∗−→ Ak(U)→ 0

and the same exact sequence for E|Z , E, E|U . Now from the surjectivity for E|Z and
E|U the surjectivity of p∗ follows.

Let s : X ↪→ E be a zero section and α ∈ Ak(E) then we can define s∗(α) as the
unique cycle in Ak−r such that p∗s∗(α) = α. So we can now define intersections of
closed subvarieties Z ⊂ E and zero section (of E)! This is exactly what we need.

5. Virtual fundamental class for perfect tangent-obstruction theory

Let us now briefly describe the general aprocach to constructing of [M]vir starting
from a perfect tangent-obstruction theory T .

Let us now define perfect obstruction theory on a sheme (more generally Deligne-
Mumford stack) X.

It consists of a complex E−1 → E0 of locally trivial sheaves on X such that for any
embedding X ↪→ Y into a smooth Y we have a morphism of complexes [E−1 → E0]→
[N∨

M/Y → ΩY |M] which is an isomorphism on h0 and surjection on h−1.

Remark 5.1. Note that we have the following exact sequence

0→ (T1
M)∨ → N∨M/Y → ΩY |M → ΩM → 0

so the cohomologies of the complex [N∨
M/Y → ΩY |M] do not depend on Y . So we can

actually consider [N∨
M/Y → ΩY |M] as an object of the derived category Db(M) (this is a

so-called truncated cotangent complex) and define perfect obstruction theory without
Y .
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In general we construct a vector bundle V on M and a cone C ⊂ V and define
[M]vir := s∗(C), where s : M ↪→ V is the zero section. Pair (C ⊂ V ) is constructed
purely in terms of tangent-obstruction complex of M. Let us remark that the virtual
fundamental class depends on the choice of the tangent-obstruction complex.

Let us roughly describe the construction of C and V . Again choose an embedding
M ↪→ Y , where Y is smooth (there are no vector bundle E now). We still have the
canonical morphisms Ik/Ik+1 → Sk(ΩY |M) which induces a morphism

TY |M → CM/Y

and we define CM := CM/Y /TY |M (this is a stack quotient!). In the same way we can
define the quotient NM/TY |M and note that we have the natural morphism

CM → NM.

Recall also that we have our perfect obstruction theory E−1 → E0 which has a
morphism to N∨

M/Y → ΩY |M. They induce morphisms of the corresponding schemes

E1, E0, NM/Y , TY |M and we can form a quotient E1/E0 which will be a vector bundle
stack over M.

So we obtain the embedding CM ↪→ NM ↪→ E1/E0 and the analogue of Proposi-
tion 4.6 holds for vector bundle stacks! So we can again define [M]vir := 0∗(CM), where
0 it the zero stction of the vector bundle (stack) E1/E0 →M.

The other way to do (even more simple) is the following: we can now form a fibre
product C := CM ×E1/E0

E1 and note that directly from the definitions C is now a

scheme which is embedded into a vector bundle E1. So we can define [M]vir := 0∗(C)
where 0: M ↪→ E1 is the zero section.


