NO REGULARIZATIONS OF PSEUDO-AUTOMORPHISMS WITH POSITIVE ENTROPY

ALEXANDRA KUZNETSOVA

1. INTRODUCTION

From dynamical point of view the most interesting case of automorphisms of compact Kähler varieties is the case of automorphisms of positive entropy. The fundamental theorem of Gromov [Gro03] and Yomdin [Yom87] says that the topological entropy of the regular automorphism φ of a compact Kähler variety X is the following number:

$$h_{top}(\varphi) = \log \max_{1 \leq i \leq \dim(X)} \lambda_i(\varphi),$$

where λ_i is the *i*-th dynamical degree of φ . By definition it is the spectral radius of $\varphi^*|_{H^{i,i}(X)}$. The theory of automorphisms with positive entropy of compact Kähler surfaces is studied in details [Can99]. There are a lot of interesting examples of such automorphisms on K3 and rational surfaces.

Known automorphisms with positive entropy of surfaces induce a lot of examples of such automorphisms in higher dimensions. That is why we are mostly interested in those automorphisms that can not be induced in such a way. Thus, we study *primitive* automorphisms: those one where we have no dominant rational map $\alpha: X \to B$ and a rational automorphism $\varphi_B: B \to B$ with properties $0 < \dim(B) < \dim(X)$ and a diagram commutes:

However, examples of primitive automorphisms in dimensions 3 and higher are quite rare. In particular, there is just one known example of a rational threefold with a regular primitive automorphism of positive entropy [OT15]. Nevertheless, we can consider a wider class of automorphisms, namely *pseudo-automorphisms* those birational self-maps that do not contract divisors. The first dynamical degree is well-defined for such self-maps and if it is greater than 1 by [DS05] the entropy of such a map is positive. There are several examples of rational varieties with pseudo-automorphisms of positive entropy [Bla13], [PZ14]. The reasonable question arises:

Question: if we have a primitive pseudo-automorphism φ with positive entropy of a smooth variety X then is there a smooth birational model of X on which this automorphism can be regularized?

Here we give some partial answer for this question and then show that the pseudo-automorphisms described in [Bla13] can not be regularized.

2. Obstruction to regularization of a pseudo-automorphism

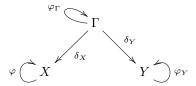
We consider a smooth variety X and its pseudo-automorphism φ . We need an additional assumption on φ :

(2.1)
$$\lambda_1(\varphi)^2 > \lambda_2(\varphi).$$

Note that, if $\dim(X) = 3$ this assumption is true for φ or φ^{-1} . Denote by θ_+ an eigenvector of the action of φ^* on $H^{1,1}_{\mathbb{R}}(X)$ corresponding to the eigenvalue λ_1 . Then this is the criterion for the pseudo-automorphism φ that can be regularized.

Theorem 2.2. Assume that $\varphi: X \to X$ is a primitive pseudo-automorphism with positive entropy and a property (2.1). If θ_+ is not nef, then there is no smooth birational models of X on which φ induces a regular automorphism.

Proof. Assume that $\varphi_Y \colon Y \to Y$ is a regularization of φ on a smooth birational model Y of X. Then there exists a map $X \dashrightarrow Y$. Denote by Γ the graph of this map. By δ_X and δ_Y we denote the maps from Γ to X and Y respectively and by φ_{Γ} denote the birational automorphism of Γ induced by φ .



By [DS05, Corollary 7] we see that $\lambda_i(\varphi) = \lambda_i(\varphi_Y) = \lambda_i(\varphi_\Gamma)$. Moreover, since φ is a pseudo-automorphism and φ_Y is regular, the induced automorphism φ_Γ is also a pseudo-automorphism. In particular all these automorphism are 1-stable in sence of [Tru14]. Thus, by [Tru14, Theorem 1] in view of (2.1) all eigenvalues $\lambda_1(\varphi)$, $\lambda_1(\varphi_Y)$ and $\lambda_1(\varphi_\Gamma)$ are simple for maps φ^* , φ^*_Y and φ^*_Γ of $H^{1,1}(X)$, $H^{1,1}(Y)$ and $H^{1,1}(\Gamma)$. Denote by θ_{+Y} and $\theta_{+\Gamma}$ the eigenvectors corresponding to these eigenvalues. Since $\delta^*_X(\theta_{+X})$ and $\delta^*_Y(\theta_{+Y})$ are eigenvectors of φ^*_Γ of $H^{1,1}(\Gamma)$, we get the following:

$$\delta_X^*(\theta_{+X}) = \delta_Y^*(\theta_{+Y}) = \theta_{+\Gamma}.$$

Since $\theta_+ = \lim(\phi_Y^n)^* H$ for some ample class H and φ_Y is regular the divisor class θ_{+Y} is nef. Since the inverse image of any divisor D under birational morphism is nef if and only if D itself is nef, we have that classes coincide $\delta_X^*(\theta_{+X}) = \delta_Y^*(\theta_{+Y})$ and consequently θ_{+X} is nef. This contradicts to an assumption; thus, φ_Y is not regular.

3. Blanc's pseudo-automorphism admits no regularizations

3.1. Construction. This family of pseudoautomorphisms with positive entropy is described in the papaer of Blanc [Bla13]. We consider a cubic hypersurface Q in \mathbb{P}^3 . To each smooth point $p \in Q$ we associate a birational involution of the projective space

$$\sigma_n \colon \mathbb{P}^3 \dashrightarrow \mathbb{P}^3.$$

The involution σ_p fix pointwise the hypersurface Q; its base locus contains of the point p and a curve $\Gamma \subset Q$.

Consider now k general distinct smooth points p_1, \ldots, p_k on Q and curves $\Gamma_1, \ldots, \Gamma_k$ in the base loci of the involutions $\sigma_{p_1}, \ldots, \sigma_{p_k}$. Consider a sequence of morphisms

$$\delta_i \colon X_i \to X_{i-1},$$

where X_{-1} is \mathbb{P}^3 , then X_0 is the blow-up of all points p_1, \ldots, p_k and X_i is the blow-up of the strict transform of Γ_i . Denote by X the variety X_k and by δ the composition of all morphisms:

$$\delta \colon X \to \mathbb{P}^3.$$

Then by [Bla13, Theorem 1.2] the composition

$$\varphi = \sigma_1 \circ \cdots \circ \sigma_k \colon X \dashrightarrow X$$

is a pseudoautomorphism. Moreover, if k > 2, then the topological entropy of the composition is greater then zero.

Denote by H the class of hyperplane class in \mathbb{P}^3 , by E_i the exceptional divisor over point p_i in X, by F_j the exceptional divisor over the Γ_j and by \tilde{H} , \tilde{E}_i and \tilde{F}_i the inverse images of this divisors in X. These classes freely generate the Neron-Severi group of X.

Recall the necessary assertion by Blanc:

Lemma 3.1. [Bla13, Proposition 2.3] If $\varphi = \sigma_1 \circ \cdots \circ \sigma_k$, then for all *n* there exists a set of non-negative numbers $\alpha_{n1}, \ldots, \alpha_{nk}$ such that $\alpha_{ni} < \alpha_{n1}$ for all i > 1 and we have an equality:

$$(\varphi^n)^*(\widetilde{H}) = \left(1 + 2\sum_{i=1}^k \alpha_{ni}\right)\widetilde{H} - \left(\sum_{i=1}^k 2\alpha_{ni}\widetilde{E}_i\right) - \left(\sum_{i=1}^k \alpha_{ni}\widetilde{F}_i\right).$$

3.2. The map φ has no regularizations. Now let us consider a general plane Π in \mathbb{P}^3 passing through the point p_1 . Denote by C the curve of intersection of Π and Q and by \widetilde{C} its strict preimage in X. Then \widetilde{C} have the following intersection with divisors on X.

Lemma 3.2. We have the following equalities:

- (i) $\widetilde{C} \cdot \widetilde{H} = 3;$
- (ii) $\widetilde{C} \cdot \widetilde{F}_j = 6$ for all $j = 1, \dots, k$. (iii) $\widetilde{C} \cdot \widetilde{E}_1 = 1$ and $\widetilde{C} \cdot \widetilde{E}_i = 0$ for i > 1.

Denote as before by θ_+ the eigenvector of the action of φ^* on NS(X) which eigenvalue equals dynamical degree of φ .

Corollary 3.3. If $k \ge 3$, then the class θ_+ is not numerically effective and φ can not be regularized.

Proof. The product $\theta_+ \cdot \widetilde{C}$ is such a limit:

$$\theta_+ \cdot \widetilde{C} = \lim_{n \to \infty} \frac{(\varphi^n)^* (\widetilde{H}) \cdot \widetilde{C}}{\deg(\varphi^n)}$$

Denote by A_n the sum $\sum_{i=1}^k \alpha_{ni}$. Then Lemmas 3.2 and 3.1 imply the following:

$$\frac{(\varphi^n)^*(\widetilde{H})\cdot\widetilde{C}}{\deg(\varphi^n)} = \frac{(1+2A_n)\widetilde{H}\cdot\widetilde{C} - (\sum_{i=1}^k 2\alpha_{ni}\widetilde{E}_i\cdot\widetilde{C}) - (\sum_{i=1}^k \alpha_{ni}\widetilde{F}_i\cdot\widetilde{C})}{1+2A_n} = \frac{3(1+2A_n) - 2\alpha_{n1} - 6A_n}{1+2A_n} = \frac{3-2\alpha_{n1}}{1+2A_n}$$

Since by Lemma 3.1 we have $0 \leq \alpha_{ni} < \alpha_{n1}$ for all i > 1, then $\alpha_{n1} > \frac{A_n}{k}$. Thus, we get

$$\theta_+ \cdot \widetilde{C} \leqslant \lim_{n \to \infty} \frac{3 - \frac{2A_n}{k}}{1 + 2A_n} = -\frac{1}{k} < 0.$$

This proves that θ_+ is not nef. Using Theorem 2.2 we get the result.

References

- [Bla13] J. Blanc. Dynamical degrees of (pseudo)-automorphisms fixing cubic hypersurfaces. Indiana Univ. Math. J., 62(4):1143-1164, 2013.
- [Can99] Serge Cantat. Dynamique des automorphismes des surfaces projectives complexes. C. R. Acad. Sci. Paris Sér. I Math., 328(10):901-906, 1999.
- [DS05] T.-C. Dinh and N. Sibony. Une borne supérieure pour l'entropie topologique d'une application rationnelle. Ann. of Math. (2), 161(3):1637-1644, 2005.
- [Gro03] M. Gromov. On the entropy of holomorphic maps. Enseign. Math. (2), 49(3-4):217-235, 2003.
- [OT15] K. Oguiso and T. T. Truong. Explicit examples of rational and Calabi-Yau threefolds with primitive automorphisms of positive entropy. J. Math. Sci. Univ. Tokyo, 22(1):361-385, 2015.
- [PZ14] F. Perroni and D.-Q. Zhang. Pseudo-automorphisms of positive entropy on the blowups of products of projective spaces. Math. Ann., 359(1-2):189-209, 2014.
- T. T. Truong. The simplicity of the first spectral radius of a meromorphic map. Michigan Math. J., 63(3):623-633, [Tru14] 2014.
- [Yom87] Y. Yomdin. Volume growth and entropy. Israel J. Math., 57(3):285-300, 1987.

NATIONAL RESEARCH UNIVERSITY HIGHER SCHOOL OF ECONOMICS, RUSSIAN FEDERATION, DEPARTMENT OF MATHEMATICS; ÉCOLE POLYTECHNIQUE, FRANCE, CMLS.

E-mail address: sasha.kuznetsova.57@gmail.com