Some Exercises

Voronovo, 2019

Curves are usually smooth projective curves.

1) Let C be the curve over \mathbb{F}_{p} defined by $x^{3}+y^{3}+z^{3}=0$. Show that $\# C\left(\mathbb{F}_{p}\right)=p+1$ if $p \not \equiv 1(\bmod 3)$.
2) Let $C=\mathbb{P}^{1}$ over \mathbb{F}_{q}. Show that points of degree $d>1$ correspond bijectively to monic irreducible polynomials of degree d in $\mathbb{F}_{q}[x]$.
3) Let C be the curve defined by $y^{3}+y=x^{4}$ over \mathbb{F}_{3}. Show that $t=x / y$ is a local parameter at the point at ∞. Show that $d x$ defines a regular differential form on C. Calculate the genus g of C. Give a basis of the space of regular differential forms.
4)

i) Let C be the curve defined over k with $\operatorname{char}(k) \neq 2$ by $y^{2}=f$ such that f is of degree 3 in $k[x]$ and has non-zero discriminant. Calculate the genus of C.
ii) Let C be the curve defined by $y^{2}+y=\left(x^{3}+x^{2}+1\right) /\left(x^{3}+x+1\right)$ over \mathbb{F}_{2}. Calculate $\# C\left(\mathbb{F}_{2}\right)$ and $\# C\left(\mathbb{F}_{4}\right)$.
5) Let F be a function field in one variable, R a valuation ring of F and m its maximal ideal. Let $0 \neq x \in m$.
i) Suppose that $x_{1}=x, x_{2}, x_{3}, \ldots, x_{n} \in R$ are such that $x_{i} \in x_{i+1} m$. Prove that $n \leq[F: k(x)]$.
ii) Prove that m is a principal ideal.
6) Let C be the curve over \mathbb{F}_{5} given by $y^{5}+y=x^{3}$. Calculate the genus of C and a basis of the space of regular differentials.
7) Let $f: X \rightarrow Y$ be a non-constant morphism of smooth projective curves. Let P be a place of Y and Q be a place of X lying over it. Let t be a local parameter at P and s one at Q. Define
i) $e_{Q}=\operatorname{ord}_{Q}\left(f^{*} t\right)$; (ramification index)
ii) $r_{Q}=\operatorname{ord}_{Q}\left(f^{*} d t / d s\right)$.

Define $R:=\sum_{Q} r_{Q} Q$ with the sum over all places Q of X.
i) Show that $r_{Q}=e_{Q}-1$ if $\operatorname{char}(k)=p$ does not divide e_{Q}, else $r_{Q}>e_{q}-1$.
ii) Show that $2 g(X)-2=\operatorname{deg}(f)(2 g(Y)-2)+\operatorname{deg}(R)$. (Hurwitz-Zeuthen formula)
8) Let C be the curve over \mathbb{F}_{p} given by $y^{p}-y=x^{p+1}$ and let $f: C \rightarrow \mathbb{P}^{1}$ be given by x (or by $\mathbb{F}_{p}(x) \subset \mathbb{F}_{2}(C)$). Calculate the degree of f, and the ramification index at ∞. Calculate the genus of C.
9) Let D be a divisor on the smooth projective curve C over the field k. Show that $\ell(D)=\operatorname{dim}_{k} L(D)$ depends only on the linear equivalence class of D.
10) Let C be a curve over \mathbb{F}_{q} and P a place of C of degree d over \mathbb{F}_{q}. Furthermore, let Q be a place on $C / \mathbb{F}_{q^{n}}$ lying over P.
i) Show that $d^{\prime}:=\operatorname{deg} Q$ is equal to $d / \operatorname{gcd}(d, n)$.
ii) Show that there are $\operatorname{gcd}(d, n)$ places Q lying over P.
11) Let C / F_{q} and $N_{n}=\# C\left(\mathbb{F}_{q^{n}}\right)$ and π_{n} the number of places of degree n on C / \mathbb{F}_{q}. Show that
i) $N_{n}=\sum_{d \mid n} d \pi_{d}$;
ii) $\pi_{n}=\frac{1}{n} \sum_{d \mid n} \mu(n / d) N_{d}$ with μ the Möbius function.
12) Show for $d, n \in \mathbb{Z}_{\geq 1}$ the following identity in $\mathbb{Z}[X]$:

$$
\left(X^{n / \operatorname{gcd}(d, n)}-1\right)^{\operatorname{gcd}(d, n)}=\prod_{\zeta \zeta \zeta^{n}=1}\left(X-\zeta^{d}\right)
$$

13)

i) Let P be a point of degree n on \mathbb{P}^{1} over \mathbb{F}_{q}. Show that $\ell(P)=n+1$.
ii) Prove for a divisor D on a curve C / k :

$$
\operatorname{dim}_{k} L(D) \leq \operatorname{deg}(D)+1
$$

14) Let D_{1} and D_{2} be effective divisors on a smooth projective curve C.
i) Show that $\operatorname{dim}\left|D_{1}\right|+\operatorname{dim}\left|D_{2}\right| \leq \operatorname{dim}\left|D_{1}+D_{2}\right|$;
ii) If D is effective and $\ell(K-D)>0$ then show that $\ell(D)+\ell(K-D) \leq g+1$.
iii) If If D is effective and $\ell(K-D)>0$ then show the inequality $\ell(D) \leq 1+\operatorname{deg}(D) / 2$ (Clifford).
15) Let $Z(C, t)$ be the zeta function of C / \mathbb{F}_{q}. Show that

$$
N_{r}=\frac{1}{(r-1)!} \frac{d^{r}}{d t^{r}} \log Z(C, t)_{\mid t=0}
$$

15) Calculate $Z(C, t)$ for C over \mathbb{F}_{2} given by $y^{2}+y=x^{3}$.
16) Let C be the curve in \mathbb{P}^{2} over \mathbb{F}_{2} given by $x^{3}+y^{3}+z^{3}=0$. Find a closed formula for $\# C\left(\mathbb{F}_{2^{n}}\right)$.
17) Calculate $Z(C, t)$ for C / F_{2} given by $y^{2}+y=x^{5}$. Find a closed formula for $\# C\left(\mathbb{F}_{2^{n}}\right)$. Calculate \#Pic $(C)\left(\mathbb{F}_{2^{n}}\right)$.
18) (2-variable zeta function) Define for C / \mathbb{F}_{q} the function

$$
Z(C, t, u)=\sum_{[D]} \frac{u^{\ell(D)}-1}{u-1} t^{\operatorname{deg}(D)}
$$

where the sum is over $[D] \in \operatorname{Pic}(C)\left(\mathbb{F}_{q}\right)$.
i) Show that $Z(C, t, q)=Z(C, t)$.
ii) Show that

$$
(u-1) Z(C, t, u)=\sum_{i=0}^{2 g-2} \sum_{[D], \operatorname{deg}(D)=i} u^{\ell(D)} t^{\operatorname{deg}(D)}+\sum_{i>2 g-2} h u^{i+1-g} t^{i}-\sum_{i \geq 0} h t^{i}
$$

iii) Define

$$
W_{C}(x, y):=\sum_{[D]} x^{\ell(D)} y^{\ell(K-D)}
$$

Prove:

$$
W_{C}(x, y)=\sum_{i=0}^{2 g-2} x^{\ell(D)} y^{\ell(K-D)}+h \frac{x^{g}}{1-x}+h \frac{y^{g}}{1-y} .
$$

iv) Show that $(u-1) t^{1-g} Z(C, t, u)=W\left(u t, t^{-1}\right)$.
v) Let E be an elliptic curve over \mathbb{F}_{q}. Show that

$$
Z(E, t, u)=\frac{1+(h-1-u) t+u t^{2}}{(1-t)(1-u t)}
$$

vi) Show the functional equation

$$
Z(C, t, u)=u^{g-1} t^{2 g-2} Z(C, 1 / u t, u)
$$

19) Let C be a hyperelliptic curve $C \xrightarrow{2: 1} \mathbb{P}^{1}$ over k with $\operatorname{char}(k) \neq 2$. Let P be a ramification point of $C \rightarrow \mathbb{P}^{1}$. Show that the gap sequence at P is $\{1,3,5, \ldots, 2 g-1\}$.
20) Let D be a divisor of degree d and $\operatorname{dim}|D|=n$. Show the following facts.
i) $n=d-g$ for $d>2 g-2$;
ii) $\operatorname{dim} \mathcal{L}_{i}=d-g-i$ for $d \geq 2 g+i-1$;
iii) $j_{i}=i$ for $d \geq 2 g+i$.
21) Let $D_{t}^{(n)}$ be the nth Hasse derivative. Show that

$$
D_{t}^{(n)}\left(t^{-i}\right)=(-1)^{n}\binom{n+i-1}{n} t^{-n-i}
$$

22) Let F be a homogeneous polynomial in x_{0}, x_{1}, x_{2} of degree d defining a curve C over k of characteristic $p>0$. Let H be the Hessian

$$
\operatorname{det}\left(\partial^{2} F / \partial x_{i} \partial x_{j}\right)
$$

Write $F_{i}=\partial F / \partial x_{i}$ etc. Use Euler's formula to show that

$$
X_{0} H=(d-1) \operatorname{det}\left(\begin{array}{lll}
F_{0} & F_{01} & F_{02} \\
F_{1} & F_{11} & F_{12} \\
F_{2} & F_{12} & F_{22}
\end{array}\right)
$$

Conclude that H vanishes identically if $d \equiv 1(\bmod p)$.
23) Let F be a homogeneous polynomial in x_{0}, x_{1}, x_{2} of degree d defining a curve C over k of characteristic $p>0$. Let P be a non-singular point of C. Show that P is an inflection point if $H(P)=0$ if $p \neq 2$ and d is odd.
24) Let p be a prime. Let $n, m \in \mathbb{Z}_{\geq 1}$ with p-adic expansion $n=\sum_{n} \nu_{i} p^{i}$ and $m=\sum \mu_{i} p^{i}$ with $0 \leq \nu_{i}, \mu_{i} \leq p-1$. Show that $\binom{n}{m} \not \equiv 0(\bmod p)$ if and only if $\nu_{i} \geq \mu_{i}$.
25) Let p be a prime. Show that for $q=p^{m}$ we have $\binom{n q}{q} \equiv n(\bmod p)$.
26) Let C be the curve given by $y^{5}+y=x^{3}$ over \mathbb{F}_{5}. Show that $1, x, y, y^{2}$ generate $L(K)$. Calculate the order sequence $\left\{\epsilon_{0}, \ldots, \epsilon_{3}\right\}$ for $\mathcal{L}=|K|$. Is $|K|$ classical? Is $|K|$ Frobenius classical?
27) Show that if the Frobenius number ν_{i} satisfies $\nu_{i}<p$ then $\left(\nu_{0}, \ldots, \nu_{i}\right)=(0,1, \ldots, i)$.
28) Show that for the curve $y^{5}+y=x^{3}$ over \mathbb{F}_{25} the Frobenius sequence $\left\{\nu_{0}, \nu_{1}, \nu_{2}\right\}$ equals $\{0,1,5\}$.
29) Let C be a smooth plane curve of degree d over \mathbb{F}_{q}. Prove that

$$
N_{1} \leq \frac{1}{2}\left(\nu_{1}(2 g-2)+n(q+2)\right) .
$$

30) Let C be the hermitian curve over $\mathbb{F}_{q^{2}}$ given by

$$
x^{q+1}+y^{q+1}+z^{q+1}=0 .
$$

Show that $\left\{\epsilon_{0}, \epsilon_{1}, \epsilon_{2}\right\}=\{0,1, q\}$. Show that at a rational point P we have $\left\{j_{0}, j_{1}, j_{2}\right\}=$ $\{0,1, q+1\}$ and $\left\{\nu_{0}, \nu_{1}\right\}=\{0, q\}$. Calculate the Stöhr-Voloch bound for $\# C\left(\mathbb{F}_{q^{2}}\right)$.
31) Calculate the automorphism group of the hermitian curve over $\mathbb{F}_{q^{2}}$.
32) Let $\mathcal{L}=|D|$ be a complete linear series on a curve C with $\operatorname{deg}(D) \geq 2 g$.
i) Show that such a system exists.
ii) Show that $n=\operatorname{dim}|D|=d-g$ and \mathcal{L} is base-point-free.
33) Determine for $p=13$ for which genera g the Hasse-Weil-Serre bound is better than the Ihara bound.
34) Calculate the Hasse-Weil-Serre and Ihara bound for $(q, g)=(2,3)$. Show that the curve over \mathbb{F}_{2} given by

$$
y^{2} z^{2}+y z^{3}+x y^{3}+x^{2} y^{2}+x^{3} z+x z^{3}=0
$$

passes through all points of $\mathbb{P}^{2}\left(\mathbb{F}_{2}\right)$. Show that $N_{2}(3)=7$.

