Some Exercises

Voronovo, 2019

Curves are usually smooth projective curves.

- 1) Let C be the curve over \mathbb{F}_p defined by $x^3 + y^3 + z^3 = 0$. Show that $\#C(\mathbb{F}_p) = p + 1$ if $p \not\equiv 1 \pmod{3}$.
- 2) Let $C = \mathbb{P}^1$ over \mathbb{F}_q . Show that points of degree d > 1 correspond bijectively to monic irreducible polynomials of degree d in $\mathbb{F}_q[x]$.
- 3) Let C be the curve defined by $y^3 + y = x^4$ over \mathbb{F}_3 . Show that t = x/y is a local parameter at the point at ∞ . Show that dx defines a regular differential form on C. Calculate the genus g of C. Give a basis of the space of regular differential forms.

4)

- i) Let C be the curve defined over k with $\operatorname{char}(k) \neq 2$ by $y^2 = f$ such that f is of degree 3 in k[x] and has non-zero discriminant. Calculate the genus of C.
- ii) Let C be the curve defined by $y^2 + y = (x^3 + x^2 + 1)/(x^3 + x + 1)$ over \mathbb{F}_2 . Calculate $\#C(\mathbb{F}_2)$ and $\#C(\mathbb{F}_4)$.
- 5) Let F be a function field in one variable, R a valuation ring of F and m its maximal ideal. Let $0 \neq x \in m$.
 - i) Suppose that $x_1 = x, x_2, x_3, \dots, x_n \in R$ are such that $x_i \in x_{i+1}m$. Prove that $n \leq [F:k(x)]$.
 - ii) Prove that m is a principal ideal.
- 6) Let C be the curve over \mathbb{F}_5 given by $y^5 + y = x^3$. Calculate the genus of C and a basis of the space of regular differentials.
- 7) Let $f: X \to Y$ be a non-constant morphism of smooth projective curves. Let P be a place of Y and Q be a place of X lying over it. Let t be a local parameter at P and s one at Q. Define
 - i) $e_Q = \operatorname{ord}_Q(f^*t)$; (ramification index)
 - ii) $r_Q = \operatorname{ord}_Q(f^* dt/ds)$.

Define $R := \sum_{Q} r_{Q} Q$ with the sum over all places Q of X.

- i) Show that $r_Q = e_Q 1$ if $\operatorname{char}(k) = p$ does not divide e_Q , else $r_Q > e_q 1$.
- ii) Show that $2g(X) 2 = \deg(f)(2g(Y) 2) + \deg(R)$. (Hurwitz-Zeuthen formula)
- 8) Let C be the curve over \mathbb{F}_p given by $y^p y = x^{p+1}$ and let $f: C \to \mathbb{P}^1$ be given by x (or by $\mathbb{F}_p(x) \subset \mathbb{F}_2(C)$). Calculate the degree of f, and the ramification index at ∞ . Calculate the genus of C.
- 9) Let D be a divisor on the smooth projective curve C over the field k. Show that $\ell(D) = \dim_k L(D)$ depends only on the linear equivalence class of D.

- 10) Let C be a curve over \mathbb{F}_q and P a place of C of degree d over \mathbb{F}_q . Furthermore, let Q be a place on C/\mathbb{F}_{q^n} lying over P.
 - i) Show that $d' := \deg Q$ is equal to $d/\gcd(d, n)$.
- ii) Show that there are gcd(d, n) places Q lying over P.
- 11) Let C/F_q and $N_n = \#C(\mathbb{F}_{q^n})$ and π_n the number of places of degree n on C/\mathbb{F}_q . Show that
 - i) $N_n = \sum_{d|n} d \pi_d;$
 - ii) $\pi_n = \frac{1}{n} \sum_{d|n} \mu(n/d) N_d$ with μ the Möbius function.
- 12) Show for $d, n \in \mathbb{Z}_{>1}$ the following identity in $\mathbb{Z}[X]$:

$$(X^{n/\gcd(d,n)}-1)^{\gcd(d,n)}=\prod_{\zeta:\zeta^n=1}(X-\zeta^d).$$

- 13)
 - i) Let P be a point of degree n on \mathbb{P}^1 over \mathbb{F}_q . Show that $\ell(P) = n + 1$.
 - ii) Prove for a divisor D on a curve C/k:

$$\dim_k L(D) \le \deg(D) + 1.$$

- 14) Let D_1 and D_2 be effective divisors on a smooth projective curve C.
 - i) Show that $\dim |D_1| + \dim |D_2| \le \dim |D_1 + D_2|$;
- ii) If D is effective and $\ell(K-D) > 0$ then show that $\ell(D) + \ell(K-D) \leq g+1$.
- iii) If If D is effective and $\ell(K-D) > 0$ then show the inequality $\ell(D) \le 1 + \deg(D)/2$ (Clifford).
- 14) Let Z(C,t) be the zeta function of C/\mathbb{F}_q . Show that

$$N_r = \frac{1}{(r-1)!} \frac{d^r}{dt^r} \log Z(C, t)_{|t=0}.$$

- 15) Calculate Z(C,t) for C over \mathbb{F}_2 given by $y^2+y=x^3$.
- 16) Let C be the curve in \mathbb{P}^2 over \mathbb{F}_2 given by $x^3 + y^3 + z^3 = 0$. Find a closed formula for $\#C(\mathbb{F}_{2^n})$.
- 17) Calculate Z(C,t) for C/F_2 given by $y^2+y=x^5$. Find a closed formula for $\#C(\mathbb{F}_{2^n})$. Calculate $\#\operatorname{Pic}(C)(\mathbb{F}_{2^n})$.
- 18) (2-variable zeta function) Define for C/\mathbb{F}_q the function

$$Z(C, t, u) = \sum_{[D]} \frac{u^{\ell(D)} - 1}{u - 1} t^{\deg(D)}$$

where the sum is over $[D] \in \text{Pic}(C)(\mathbb{F}_q)$.

- i) Show that Z(C, t, q) = Z(C, t).
- ii) Show that

$$(u-1)Z(C,t,u) = \sum_{i=0}^{2g-2} \sum_{[D],\deg(D)=i} u^{\ell(D)} t^{\deg(D)} + \sum_{i>2g-2} h u^{i+1-g} t^i - \sum_{i\geq 0} h t^i.$$

iii) Define

$$W_C(x,y) := \sum_{[D]} x^{\ell(D)} y^{\ell(K-D)}.$$

Prove:

$$W_C(x,y) = \sum_{i=0}^{2g-2} x^{\ell(D)} y^{\ell(K-D)} + h \frac{x^g}{1-x} + h \frac{y^g}{1-y}.$$

- iv) Show that $(u-1)t^{1-g}Z(C,t,u) = W(ut,t^{-1}).$
- v) Let E be an elliptic curve over \mathbb{F}_q . Show that

$$Z(E, t, u) = \frac{1 + (h - 1 - u)t + ut^{2}}{(1 - t)(1 - ut)}$$

vi) Show the functional equation

$$Z(C, t, u) = u^{g-1}t^{2g-2}Z(C, 1/ut, u)$$
.

- 19) Let C be a hyperelliptic curve $C \xrightarrow{2:1} \mathbb{P}^1$ over k with $\operatorname{char}(k) \neq 2$. Let P be a ramification point of $C \to \mathbb{P}^1$. Show that the gap sequence at P is $\{1, 3, 5, \ldots, 2g 1\}$.
- 20) Let D be a divisor of degree d and dim |D| = n. Show the following facts.
 - i) n = d g for d > 2g 2;
- ii) dim $\mathcal{L}_i = d g i$ for $d \ge 2g + i 1$;
- iii) $j_i = i$ for $d \ge 2g + i$.
- 21) Let $D_t^{(n)}$ be the *n*th Hasse derivative. Show that

$$D_t^{(n)}(t^{-i}) = (-1)^n \binom{n+i-1}{n} t^{-n-i}.$$

22) Let F be a homogeneous polynomial in x_0, x_1, x_2 of degree d defining a curve C over k of characteristic p > 0. Let H be the Hessian

$$\det\left(\partial^2 F/\partial x_i \partial x_j\right) .$$

Write $F_i = \partial F/\partial x_i$ etc. Use Euler's formula to show that

$$X_0 H = (d-1) \det \begin{pmatrix} F_0 & F_{01} & F_{02} \\ F_1 & F_{11} & F_{12} \\ F_2 & F_{12} & F_{22} \end{pmatrix}$$

Conclude that H vanishes identically if $d \equiv 1 \pmod{p}$.

- 23) Let F be a homogeneous polynomial in x_0, x_1, x_2 of degree d defining a curve C over k of characteristic p > 0. Let P be a non-singular point of C. Show that P is an inflection point if H(P) = 0 if $p \neq 2$ and d is odd.
- 24) Let p be a prime. Let $n, m \in \mathbb{Z}_{\geq 1}$ with p-adic expansion $n = \sum \nu_i p^i$ and $m = \sum \mu_i p^i$ with $0 \leq \nu_i, \mu_i \leq p 1$. Show that $\binom{n}{m} \not\equiv 0 \pmod{p}$ if and only if $\nu_i \geq \mu_i$.
- 25) Let p be a prime. Show that for $q = p^m$ we have $\binom{nq}{q} \equiv n \pmod{p}$.
- 26) Let C be the curve given by $y^5 + y = x^3$ over \mathbb{F}_5 . Show that $1, x, y, y^2$ generate L(K). Calculate the order sequence $\{\epsilon_0, \ldots, \epsilon_3\}$ for $\mathcal{L} = |K|$. Is |K| classical? Is |K| Frobenius classical?
- 27) Show that if the Frobenius number ν_i satisfies $\nu_i < p$ then $(\nu_0, \dots, \nu_i) = (0, 1, \dots, i)$.
- 28) Show that for the curve $y^5 + y = x^3$ over \mathbb{F}_{25} the Frobenius sequence $\{\nu_0, \nu_1, \nu_2\}$ equals $\{0, 1, 5\}$.
- 29) Let C be a smooth plane curve of degree d over \mathbb{F}_q . Prove that

$$N_1 \le \frac{1}{2} (\nu_1(2g-2) + n(q+2)).$$

30) Let C be the hermitian curve over \mathbb{F}_{q^2} given by

$$x^{q+1} + y^{q+1} + z^{q+1} = 0$$
.

Show that $\{\epsilon_0, \epsilon_1, \epsilon_2\} = \{0, 1, q\}$. Show that at a rational point P we have $\{j_0, j_1, j_2\} = \{0, 1, q+1\}$ and $\{\nu_0, \nu_1\} = \{0, q\}$. Calculate the Stöhr-Voloch bound for $\#C(\mathbb{F}_{q^2})$.

- 31) Calculate the automorphism group of the hermitian curve over \mathbb{F}_{q^2} .
- 32) Let $\mathcal{L} = |D|$ be a complete linear series on a curve C with $\deg(D) \geq 2g$.
 - i) Show that such a system exists.
 - ii) Show that $n = \dim |D| = d g$ and \mathcal{L} is base-point-free.
- 33) Determine for p=13 for which genera g the Hasse-Weil-Serre bound is better than the Ihara bound.
- 34) Calculate the Hasse-Weil-Serre and Ihara bound for (q, g) = (2, 3). Show that the curve over \mathbb{F}_2 given by

$$y^2z^2 + yz^3 + xy^3 + x^2y^2 + x^3z + xz^3 = 0$$

passes through all points of $\mathbb{P}^2(\mathbb{F}_2)$. Show that $N_2(3) = 7$.