Weyl invariant E_{8} Jacobi forms

Haowu Wang

Université de Lille
Seminar: "Automorphic Forms and Applications" NRU HSE, Moscow

Nov. 6, 2018

Outline

(1) Weyl invariant E_{8} Jacobi forms
(2) The whole structure of $W\left(E_{8}\right)$-invariant Jacobi forms
(3) The space of $W\left(E_{8}\right)$-invariant Jacobi forms of small index

- Main results
- The proof of main theorems
(4) The cases of index 5 and 6
(5) Outlook

Weyl invariant E_{8} Jacobi forms

Let $\varphi: \mathbb{H} \times\left(E_{8} \otimes \mathbb{C}\right) \rightarrow \mathbb{C}$ be a holomorphic function and $k \in \mathbb{Z}, t \in \mathbb{N}$. If φ satisfies the following properties
(1) $\varphi(\tau, \sigma(\mathfrak{z}))=\varphi(\tau, \mathfrak{z}), \quad \sigma \in W\left(E_{8}\right)$;
(2) $\varphi(\tau, \mathfrak{z}+x \tau+y)=e^{-t \pi i((x, x) \tau+2(x, \mathfrak{z}))} \varphi(\tau, \mathfrak{z}), \quad x, y \in E_{8}$;
(3) $\varphi\left(\frac{a \tau+b}{c \tau+d}, \frac{\mathfrak{z}}{c \tau+d}\right)=(c \tau+d)^{k} \exp \left(t \pi i \frac{c(\mathfrak{z}, \mathfrak{z})}{c \tau+d}\right) \varphi(\tau, \mathfrak{z})$;
(4) $\varphi(\tau, \mathfrak{z})=\sum_{n=0}^{\infty} \sum_{\ell \in E_{8}} f(n, \ell) e^{2 \pi i(n \tau+(\ell, \mathfrak{z}))}$
then φ is called a $W\left(E_{8}\right)$-invariant weak Jacobi form of weight k and index t.

Weyl invariant E_{8} Jacobi forms

- If φ further satisfies the condition

$$
f(n, \ell) \neq 0 \Longrightarrow 2 n t-(\ell, \ell) \geq 0
$$

then φ is called a $W\left(E_{8}\right)$-invariant holomorphic Jacobi form.

- If φ further satisfies the stronger condition

$$
f(n, \ell) \neq 0 \Longrightarrow 2 n t-(\ell, \ell)>0
$$

then φ is called a $W\left(E_{8}\right)$-invariant Jacobi cusp form.

- Denote by

$$
J_{k, E_{8}, t}^{w, W\left(E_{8}\right)} \supsetneq J_{k, E_{8}, t}^{W\left(E_{8}\right)} \supsetneq J_{k, E_{8}, t}^{\text {cusp }, W\left(E_{8}\right)}
$$

the vector space of $W\left(E_{8}\right)$-invariant weak Jacobi forms, holomorphic Jacobi forms and Jacobi cusp forms of weight k and index t.

The structure of $W\left(E_{8}\right)$-invariant Jacobi forms

Theorem (H.Wang, 2018)
The space $J_{*, E_{8}, t}^{w, W\left(E_{8}\right)}$ is a free module of rank $r(t)$ over the ring M_{*} of $\mathrm{SL}(2, \mathbb{Z})$ modular forms, where $r(t)$ is given by

$$
\frac{1}{(1-x)\left(1-x^{2}\right)^{2}\left(1-x^{3}\right)^{2}\left(1-x^{4}\right)^{2}\left(1-x^{5}\right)\left(1-x^{6}\right)}=\sum_{t \geq 0} r(t) x^{t}
$$

Equivalently, we have

$$
J_{*, E_{8}, *}^{w, W\left(E_{8}\right)} \subsetneq \mathbb{C}\left(E_{4}, E_{6}\right)\left[A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, B_{2}, B_{3}, B_{4}, B_{6}\right]
$$

and $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, B_{2}, B_{3}, B_{4}, B_{6}$ are algebraically independent over M_{*}. Here $\mathbb{C}\left(E_{4}, E_{6}\right)$ is the fractional field of $\mathbb{C}\left[E_{4}, E_{6}\right]$.

Crucial facts in the proof

t	1	2	3	4	5	6	7	8	9	10	11	12	13
$r(t)$	1	3	5	10	15	27	39	63	90	135	187	270	364

- For any $m \in E_{8}$, we define the Weyl orbit of m as

$$
\operatorname{orb}(m):=\sum_{\sigma \in W\left(E_{8}\right) / W\left(E_{8}\right)_{m}} e^{2 \pi i(\sigma(m), \mathfrak{z})} .
$$

Let w_{i} be the fundamental weights of E_{8}. The eight fundamental weyl orbits orb $\left(w_{i}\right)$ are algebraically independent over \mathbb{C}.

Crucial facts in the proof

- Every $W\left(E_{8}\right)$-orbit in E_{8} meets the set Λ_{+}in exactly one point

$$
\Lambda_{+}=\left\{m \in E_{8}:\left(\alpha_{i}, m\right) \geq 0,1 \leq i \leq 8\right\}=\bigoplus_{i=1}^{8} \mathbb{N} w_{i}
$$

- Let ϕ_{t} be a $W\left(E_{8}\right)$-invariant weak Jacobi form of index t. Then

$$
\sum_{\ell \in E_{8}} f(0, \ell) e^{2 \pi i(\ell, \mathfrak{z})}=\sum_{\substack{m \in \Lambda_{+} \\ T(m) \leq t}} c(m) \operatorname{orb}(m)
$$

where $m=\sum_{i=1}^{8} x_{i} w_{i}, c(m)$ are constants and

$$
T(m):=2 x_{1}+3 x_{2}+4 x_{3}+6 x_{4}+5 x_{5}+4 x_{6}+3 x_{7}+2 x_{8} .
$$

the structure of weak Jacobi forms

- It is well known that $J_{*, E_{8}, 1}^{w, W\left(E_{8}\right)}$ is generated by

$$
\vartheta_{E_{8}}(\tau, \mathfrak{z}):=\sum_{\ell \in E_{8}} \exp (\pi i(\ell, \ell) \tau+2 \pi i(\ell, \mathfrak{z}))
$$

the theta function of the root lattice E_{8} over M_{*}.
Theorem (H.Wang, 2018)

$$
\begin{aligned}
& J_{*, E_{8}, 2}^{w, W\left(E_{8}\right)}=M_{*}\left\langle\varphi_{-4,2}, \varphi_{-2,2}, \varphi_{0,2}\right\rangle, \\
& J_{*, E_{8}, 3}^{w, W\left(E_{8}\right)}=M_{*}\left\langle\varphi_{-8,3}, \varphi_{-6,3}, \varphi_{-4,3}, \varphi_{-2,3}, \varphi_{0,3}\right\rangle, \\
& J_{*, E_{8}, 4}^{w, W\left(E_{8}\right)}=M_{*}\left\langle\varphi_{-2 k, 4}, 0 \leq k \leq 8 ; \psi_{-8,4}\right\rangle,
\end{aligned}
$$

where $\varphi_{k, t}$ is a $W\left(E_{8}\right)$-invariant weak Jacobi form of weight k and index t.

the structure of holomorphic Jacobi forms

Theorem (H.Wang, 2018)

$$
\begin{aligned}
& J_{*, E_{8}, 2}^{W}=M_{*}\left\langle A_{2}, B_{2}, A_{1}^{2}\right\rangle, \\
& J_{*, E_{8}, 3}^{W\left(E_{8}\right)}=M_{*}\left\langle A_{3}, B_{3}, A_{1} A_{2}, A_{1} B_{2}, A_{1}^{3}\right\rangle,
\end{aligned}
$$

and $J_{*, E_{8}, 4}^{W\left(E_{8}\right)}$ is generated by two Jacobi forms of weight 4, two Jacobi forms of weight 6, three Jacobi forms of weight 8, two Jacobi forms of weight 10 and one Jacobi form of weight 12 over M_{*}.

the structure of Jacobi cusp forms

Theorem (H.Wang, 2018)
Let $t=2,3$ or 4 . The numbers of generators of indicated weght of $J_{*, E_{8}, t}^{c u s p, W\left(E_{8}\right)}$ are shown in the following table.

weight	8	10	12	14	16
$t=2$	0	0	1	1	1
$t=3$	0	1	2	1	1
$t=4$	1	2	3	2	2

Representative system of Fourier coefficients

Lemma

Let $\varphi \in J_{k, E_{8}, t}^{w, W\left(E_{8}\right)}$. Then the coefficients $f(n, \ell)$ depend only on the class of ℓ in $E_{8} / t E_{8}$ and on the value of $2 n t-(\ell, \ell)$. Besides,

$$
f(n, \ell) \neq 0 \Longrightarrow 2 n t-(\ell, \ell) \geq-\min \left\{(v, v): v \in \ell+t E_{8}\right\} .
$$

$$
\begin{aligned}
& \max \left\{\min \left\{(v, v): v \in I+2 E_{8}\right\}: I \in E_{8}\right\}=4, \\
& \max \left\{\min \left\{(v, v): v \in I+3 E_{8}\right\}: I \in E_{8}\right\}=8, \\
& \max \left\{\min \left\{(v, v): v \in I+4 E_{8}\right\}: I \in E_{8}\right\}=16, \\
& \max \left\{\min \left\{(v, v): v \in I+5 E_{8}\right\}: I \in E_{8}\right\}=22, \\
& \max \left\{\min \left\{(v, v): v \in I+6 E_{8}\right\}: I \in E_{8}\right\}=36 .
\end{aligned}
$$

Orbits of vectors under Weyl group

Lemma

Let $R_{2 n}$ denote the set of all vectors $\ell \in E_{8}$ with $(\ell, \ell)=2 n$. The orbits of $R_{2 n}$ under the action of $W\left(E_{8}\right)$ are given by

$$
\begin{array}{ll}
W\left(E_{8}\right) \backslash R_{2}=\left\{w_{8}\right\} & W\left(E_{8}\right) \backslash R_{4}=\left\{w_{1}\right\} \\
W\left(E_{8}\right) \backslash R_{6}=\left\{w_{7}\right\} & W\left(E_{8}\right) \backslash R_{8}=\left\{2 w_{8}, w_{2}\right\} \\
W\left(E_{8}\right) \backslash R_{10}=\left\{w_{1}+w_{8}\right\} & W\left(E_{8}\right) \backslash R_{12}=\left\{w_{6}\right\} \\
W\left(E_{8}\right) \backslash R_{14}=\left\{w_{3}, w_{7}+w_{8}\right\} & W\left(E_{8}\right) \backslash R_{16}=\left\{2 w_{1}, w_{2}+w_{8}\right\} \\
W\left(E_{8}\right) \backslash R_{18}=\left\{w_{1}+w_{7}, 3 w_{8}\right\} & W\left(E_{8}\right) \backslash R_{20}=\left\{w_{5}, w_{1}+2 w_{8}\right\} \\
W\left(E_{8}\right) \backslash R_{22}=\left\{w_{6}+w_{8}, w_{1}+w_{2}\right\} & W\left(E_{8}\right) \backslash R_{24}=\left\{2 w_{7}, w_{3}+w_{8}\right\} .
\end{array}
$$

$\sum_{2}=\operatorname{orb}\left(w_{8}\right)$
$\sum_{8^{\prime}}=* \operatorname{orb}\left(w_{2}\right)$
$\sum_{12}=* \operatorname{orb}\left(w_{6}\right)$
$\sum_{16^{\prime}}=* \operatorname{orb}\left(2 w_{1}\right)$
$\sum_{18^{\prime \prime}}=* \operatorname{orb}\left(3 w_{8}\right)$
$\sum_{22^{\prime}}=* \operatorname{orb}\left(w_{1}+w_{2}\right)$
$\sum_{4}=* \operatorname{orb}\left(w_{1}\right)$
$\sum_{8^{\prime \prime}}=* \operatorname{orb}\left(2 w_{8}\right)$
$\sum_{14^{\prime}}=* \operatorname{orb}\left(w_{3}\right)$
$\sum_{16^{\prime \prime}}=* \operatorname{orb}\left(w_{2}+w_{8}\right)$
$\sum_{20^{\prime}}=* \operatorname{orb}\left(w_{5}\right)$
$\sum_{22^{\prime \prime}}=* \operatorname{orb}\left(w_{6}+w_{8}\right)$

$$
\sum_{6}=* \operatorname{orb}\left(w_{7}\right)
$$

$$
\sum_{10}=* \operatorname{orb}\left(w_{1}+w_{8}\right)
$$

$$
\sum_{14^{\prime \prime}}=* \operatorname{orb}\left(w_{7}+w_{8}\right)
$$

$$
\sum_{18^{\prime}}=* \operatorname{orb}\left(w_{1}+w_{7}\right)
$$

$$
\sum_{20^{\prime \prime}}=* \operatorname{orb}\left(w_{1}+2 w_{8}\right)
$$

$$
\sum_{24^{\prime}}=* \operatorname{orb}\left(2 w_{7}\right)
$$

The normalizations of these Weyl orbits are choosen so that they reduce to 240 if one takes $\mathfrak{z}=0$.

Let φ_{t} be a $W\left(E_{8}\right)$-invariant weak Jacobi form of index t. Then its q^{0}-term can be written as

$$
\begin{aligned}
{\left[\varphi_{2}\right]_{q^{0}}=} & 240 c_{0}+c_{1} \sum_{2}+c_{2} \sum_{4}, \\
{\left[\varphi_{3}\right]_{q^{0}}=} & 240 c_{0}+c_{1} \sum_{2}+c_{2} \sum_{4}+c_{3} \sum_{6}+c_{4} \sum_{8^{\prime}}, \\
{\left[\varphi_{4}\right]_{q^{0}}=} & 240 c_{0}+c_{1} \sum_{2}+c_{2} \sum_{4}+c_{3} \sum_{6}+c_{4}^{\prime} \sum_{8^{\prime}}+c_{4}^{\prime \prime} \sum_{8^{\prime \prime}}+c_{5} \sum_{10}+c_{6} \sum_{12} \\
& +c_{7} \sum_{14^{\prime}}+c_{8} \sum_{16^{\prime}}, \\
{\left[\varphi_{5}\right]_{q^{0}}=} & 240 c_{0}+c_{1} \sum_{2}+c_{2} \sum_{4}+c_{3} \sum_{6}+c_{4}^{\prime} \sum_{8^{\prime}}+c_{4}^{\prime \prime} \sum_{8^{\prime \prime}}+c_{5} \sum_{10}+c_{6} \sum_{12} \\
& +c_{7}^{\prime} \sum_{14^{\prime}}+c_{7}^{\prime \prime} \sum_{14^{\prime \prime}}+c_{8}^{\prime} \sum_{16^{\prime}}+c_{8}^{\prime \prime} \sum_{16^{\prime \prime}}+c_{9} \sum_{18^{\prime}}+c_{10} \sum_{20^{\prime}}+c_{11} \sum_{22^{\prime}} .
\end{aligned}
$$

Let $\varphi \in J_{2 k, E_{8}, t}^{w, W\left(E_{8}\right)}$.
(1) Let $t=2$. Then φ is a holomorphic Jacobi form if and only if its q^{0}-term is a constant. Moreover, φ is a Jacobi cusp form if and only if its q^{0}-term is 0 and its q^{1}-term is of the form $c_{0}+c_{1} \sum_{2}$.
(2) Let $t=3$. Then φ is a holomorphic Jacobi form if and only if its q^{0}-term is a constant and its q^{1}-term is of the form

$$
240 c_{0}+c_{1} \sum_{2}+c_{2} \sum_{4}+c_{3} \sum_{6}
$$

Moreover, a holomorphic Jacobi form φ is a Jacobi cusp form if and only if $c_{3}=0$ and its q^{0}-term is 0 .
(3) Let $t=4$. Then φ is a holomorphic Jacobi form if and only if its q^{0}-term is a constant and its q^{1}-term is of the form

$$
240 c_{0}+c_{1} \sum_{2}+c_{2} \sum_{4}+c_{3} \sum_{6}+c_{4}^{\prime} \sum_{8^{\prime}}+c_{4}^{\prime \prime} \sum_{8^{\prime \prime}} .
$$

Moreover, a holomorphic Jacobi form φ is a Jacobi cusp form if and only if $c_{4}^{\prime}=c_{4}^{\prime \prime}=0$ and its q^{0}-term is 0 and its q^{2}-term does not contain the term $\sum_{16^{\prime}}$.

Let $\varphi_{t} \in J_{4, E_{8}, t}^{W}$. In view of the singular weight, we can write

$$
\phi_{t}(\tau, \mathfrak{z})=q^{n} \sum_{\substack{\ell \in E_{8} \\(\ell, \ell)=2 n t}} f(n, \ell) e^{2 \pi i(\ell, \mathfrak{z})}+O\left(q^{n+1}\right) \in J_{4, E_{8}, t}^{W\left(E_{8}\right)}
$$

Since $\phi_{t}(\tau, 0)=0$, if there exists $\ell \in E_{8}$ such that $f(n, \ell) \neq 0$, then there exist $\ell_{1}, \ell_{2} \in E_{8}$ satisfying $\left(\ell_{1}, \ell_{1}\right)=\left(\ell_{2}, \ell_{2}\right)=2 n t$, orb $\left(\ell_{1}\right) \neq \operatorname{orb}\left(\ell_{2}\right)$ and $\left(\ell_{i}, \ell_{i}\right)=\min \left\{(v, v): v \in \ell_{i}+t E_{8}\right\}$, for $i=1,2$. From this, we deduce $\operatorname{dim} J_{4, E_{8}, t}^{W\left(E_{8}\right)}=1, t=1,2,3,5, \quad \operatorname{dim} J_{4, E_{8}, 4}^{W\left(E_{8}\right)}=2, \quad 1 \leq \operatorname{dim} J_{4, E_{8}, 6}^{W\left(E_{8}\right)} \leq 2$.

If $\operatorname{dim} J_{4, E_{8}, 6}^{W}\left(E_{8}\right)=2$, then this Jacobi form has the Fourier expansion

$$
F_{4,6}(\tau, \mathfrak{z})=q^{2}\left(\sum_{24^{\prime}}-\sum_{24^{\prime \prime}}\right)+O\left(q^{3}\right) .
$$

Let $v_{2} \in E_{8}$ of norm 2. Then

$$
F_{4,6}\left(\tau, z v_{2}\right) / \Delta^{2}(\tau)=\zeta^{ \pm 8}+\ldots+O(q) \in J_{-20,6}^{w}, \quad \text { contradiction! }
$$

Differential operators

Lemma
Let $\varphi(\tau, \mathfrak{z})=\sum f(n, \ell) e^{2 \pi i(n \tau+(\ell, \mathfrak{z}))} \in J_{k, E_{8}, t}^{w, W\left(E_{8}\right)}$. Then we have

$$
\begin{aligned}
H_{k}(\varphi)(\tau, \mathfrak{z}) & =H(\varphi)+\frac{4-k}{12} E_{2}(\tau) \varphi(\tau, \mathfrak{z}) \in J_{k+2, E_{8}, t}^{w, W\left(E_{8}\right)} \\
H(\varphi)(\tau, \mathfrak{z}) & =\sum_{n \in \mathbb{N}} \sum_{\ell \in E_{8}}\left[n-\frac{1}{2 t}(\ell, \ell)\right] f(n, \ell) e^{2 \pi i(n \tau+(\ell, \mathfrak{z}))},
\end{aligned}
$$

where $E_{2}(\tau)=1-24 \sum_{n \geq 1} \sigma(n) q^{n}$ is the Eisenstein series of weight 2 .

To determine the possible minimum weight (index 3)

 Claim: The minimum weight of weak Jacobi forms of index 3 is -8 .If there exists a weak Jacobi form ϕ of weight $2 k<-8$ and index 3 whose q^{0}-term is not zero, then we can construct a weak Jacobi form of weight -10 and index 3 whose q^{0}-term is not zero. In fact, this function can be constructed as $E_{-10-2 k} \phi$ if $2 k \leq-14$, or $H_{-12}(\phi)$ if $2 k=-12$. We now assume that there exists a weak Jacobi form ϕ of weight -10 and index 3 whose q^{0}-term is represented as

$$
[\phi]_{q^{0}}=240 c_{0}+c_{1} \sum_{2}+c_{2} \sum_{4}+c_{3} \sum_{6}+c_{4} \sum_{8^{\prime}} .
$$

By means of the differential operators, we construct $\phi_{-8}=H_{-10}(\phi)$, $\phi_{-6}=H_{-8}\left(\phi_{-8}\right), \phi_{-4}=H_{-6}\left(\phi_{-6}\right)$ and $H_{-4}\left(\phi_{-4}\right)$.

They are respectively weak Jacobi forms of weight $-8,-6,-4,-2$ with q^{0}-term of the form (order: $240 c_{0}, c_{1} \sum_{2}, c_{2} \sum_{4}, c_{3} \sum_{6}, c_{4} \sum_{8^{\prime}}$)

$$
\begin{array}{ll}
\text { weight }-10: & \left(a_{1, j}\right)_{j=1}^{9}=(1,1,1,1,1) \\
\text { weight } & -10+2(i-1):
\end{array} \quad a_{i, j}=\left(\frac{18-2 i}{12}-\frac{j-1}{3}\right) a_{i-1, j} . l y
$$

where $2 \leq i \leq 5,1 \leq j \leq 5$. For these Jacobi forms, if we take $\mathfrak{z}=0$ then their q^{0}-terms will be zero. We thus get a system of 5 linear equations with 5 unknowns

$$
A x=0, \quad A=\left(a_{i, j}\right)_{5 \times 5}, \quad x=\left(c_{0}, c_{1}, c_{2}, c_{3}, c_{4}\right)^{t}
$$

By direct calculations, this system has only trivial solution, which contradicts our assumption. Hence the possible minimum weight is -8 .

Uniqueness of weak Jacobi form of weight -8 and index 3

Suppose that ϕ is a weak Jacobi form of weight -8 with q^{0}-term

$$
240 c_{0}+c_{1} \sum_{2}+c_{2} \sum_{4}+c_{3} \sum_{6}+c_{4} \sum_{8^{\prime}} .
$$

We can construct weak Jacobi forms of weight $-6,-4,-2$ with q^{0}-term

$$
\begin{array}{llr}
\text { weight } & -8: & \left(b_{1, j}\right)_{j=1}^{9}=(1,1,1,1,1) \\
\text { weight } & -8+2(i-1): & b_{i, j}=\left(\frac{16-2 i}{12}-\frac{j-1}{3}\right) b_{i-1, j}
\end{array}
$$

where $2 \leq i \leq 4,1 \leq j \leq 5$. Then we can build a system of 4 linear equations with 5 unknowns

$$
\begin{equation*}
B x=0, \quad B=\left(b_{i, j}\right)_{4 \times 5}, \quad x=\left(c_{0}, c_{1}, c_{2}, c_{3}, c_{4}\right)^{t} . \tag{1}
\end{equation*}
$$

We found that $\left(c_{0}, c_{1}, c_{2}, c_{3}, c_{4}\right)=(1,-4,6,-4,1)$ is the unique nontrivial solution. Therefore, the weak Jacobi form of weight -8 and index 3 is unique if it exists.

Uniqueness of weak Jacobi form of weight -6 and index 3

If there exists another weak Jacobi form of weight -6 , we assume

$$
[f]_{q^{0}}=240 c_{0}+c_{1} \sum_{2}+c_{2} \sum_{4}+c_{3} \sum_{6} \neq 0 .
$$

Once again, we construct weak Jacobi forms of weight $-4,-2$ and 0 with q^{0}-terms

$$
\begin{array}{ll}
\text { weight }-6: & \left(c_{1, j}\right)_{j=1}^{4}=(1,1,1,1) \\
\text { weight } & -6+2(i-1):
\end{array} c_{i, j}=\frac{9-i-2 j}{6} c_{i-1, j}
$$

where $2 \leq i \leq 4,1 \leq j \leq 4$. For each Jacobi form of negative weight, if we take $\mathfrak{z}=0$ then its q^{0}-term will be zero. Hence we have

$$
\sum_{j=1}^{4} c_{i, j} c_{j-1}=0, \quad 1 \leq i \leq 3
$$

Lemma

Let φ be a $W\left(E_{8}\right)$-invariant weak Jacobi form of weight 0 and index t. Then

$$
2 t \sum_{\ell \in E_{8}} f(0, \ell)=3 \sum_{\ell \in E_{8}} f(0, \ell)(\ell, \ell)
$$

For the Jacobi form of weight 0 , by the lemma we have

$$
\sum_{j=1}^{4}(12-6 j) c_{4, j} c_{j-1}=0
$$

We thus get a system of linear equations of 4×4. By direct calculations, we obtain $c_{j}=0$ for $0 \leq j \leq 3$, which contradicts our assumption.

The proof of the case of index 3

Our main theorem shows that $J_{*, E_{8}, 3}^{w, W\left(E_{8}\right)}$ is a free M_{*}-module generated by five weak Jacobi forms. It is obvious that $\varphi_{-8,3}, \varphi_{-6,3}$ and $\varphi_{-4,3}$ are generators. Since $\varphi_{-2,3}$ is independent of $E_{6} \varphi_{-8,3}$ and $E_{4} \varphi_{-6,3}$, the function $\varphi_{-2,3}$ must be a generator. Moreover, $\varphi_{0,3}$ is also a generator on account of $\left[\varphi_{0,3}\right]_{q^{0}}(\tau, 0) \neq 0$. We then conclude the eager result:

$$
J_{*, E_{8}, 3}^{w, W\left(E_{8}\right)}=M_{*}\left\langle\varphi_{-8,3}, \varphi_{-6,3}, \varphi_{-4,3}, \varphi_{-2,3}, \varphi_{0,3}\right\rangle
$$

Pull-backs of Jacobi forms

Trouble: When the index is larger than 4, the absolute value of minimal weight will be less than the maximal norm of Weyl orbits appearing in q^{0}-terms, which causes our previous approach to not work well because there is not enough linear equation in this case.

Let $\phi \in J_{k, E_{8}, t}^{w, W\left(E_{8}\right)}$ and v_{4} be a vector of norm 4 in E_{8}. Then the function

$$
\phi\left(\tau, z v_{4}\right)
$$

is a weak Jacobi form of weight k and index $2 t$.

Let \sum_{v} be a Weyl orbit associated to v :

$$
\sum_{v}=\frac{240}{\# W\left(E_{8}\right)} \sum_{\sigma \in E_{8}} \exp (2 \pi i(\sigma(v), \mathfrak{z}))
$$

Since the Weyl group $W\left(E_{8}\right)$ acts transitively on the set R_{4} of vectors of norm 4 in E_{8}, we have

$$
\begin{aligned}
\sum_{v}\left(z v_{4}\right) & =\frac{240}{\# W\left(E_{8}\right)} \sum_{\sigma \in E_{8}} \exp \left(2 \pi i\left(\sigma(v), v_{4}\right) z\right) \\
& =\frac{240}{\# W\left(E_{8}\right)} \sum_{\sigma \in E_{8}} \exp \left(2 \pi i\left(v, \sigma\left(v_{4}\right)\right) z\right) \\
& =\frac{240}{\# R_{4}} \sum_{l \in R_{4}} \exp (2 \pi i(v, l) z)
\end{aligned}
$$

In view of this fact, we define

$$
\max \left(\sum_{v}, v_{4}\right):=\max \left(v, R_{4}\right)=\max \left\{(v, l): I \in R_{4}\right\}
$$

$$
\begin{array}{lll}
\max \left(\sum_{2}, v_{4}\right)=2 & \max \left(\sum_{4}, v_{4}\right)=4 & \max \left(\sum_{6}, v_{4}\right)=4 \\
\max \left(\sum_{8^{\prime}}, v_{4}\right)=5 & \max \left(\sum_{8^{\prime \prime}}, v_{4}\right)=4 & \max \left(\sum_{10}, v_{4}\right)=6 \\
\max \left(\sum_{12}, v_{4}\right)=6 & \max \left(\sum_{14^{\prime}}, v_{4}\right)=7 & \max \left(\sum_{14^{\prime \prime}}, v_{4}\right)=6 \\
\max \left(\sum_{16^{\prime}}, v_{4}\right)=8 & \max \left(\sum_{16^{\prime \prime}}, v_{4}\right)=7 & \max \left(\sum_{18^{\prime}}, v_{4}\right)=8 \\
\max \left(\sum_{18^{\prime \prime}}, v_{4}\right)=6 & \max \left(\sum_{20^{\prime}}, v_{4}\right)=8 & \max \left(\sum_{20^{\prime \prime}}, v_{4}\right)=8 \\
\max \left(\sum_{22^{\prime}}, v_{4}\right)=9 & \max \left(\sum_{22^{\prime \prime}}, v_{4}\right)=8 & \max \left(\sum_{24^{\prime}}, v_{4}\right)=8 \\
\max \left(\sum_{24^{\prime \prime}}, v_{4}\right)=9 & \max \left(\sum_{26^{\prime}}, v_{4}\right)=10 & \max \left(\sum_{26^{\prime \prime}}, v_{4}\right)=9
\end{array}
$$

Possible minimum weight in the case of index 5

(I) Assume that $\phi=\sum_{22^{\prime}}+\cdots+O(q) \in J_{-2 k, E_{8}, 5}^{w, \mathcal{W}\left(E_{8}\right)}$ with $k>0$. Then we have

$$
\phi\left(\tau, z v_{4}\right)=\zeta^{ \pm 9}+\cdots+O(q) \in J_{-2 k, 10}^{w} .
$$

Since $J_{-2 k, 10}^{w}=\phi_{-2,1}^{k} \cdot J_{0,10-k}^{w}$, we have $10-k \geq 0$. But when $k=9$ or 10, the spaces $J_{-20,10}^{w}$ and $J_{-18,10}^{w}$ are all generated by one function with leading Fourier coefficient $\zeta^{ \pm 10}$, which contradicts the Fourier expansion of $\phi\left(\tau, z v_{4}\right)$. Therefore, we get $k \leq 8$ i.e. $-2 k \geq-16$.
(II) Assume that $\phi \in J_{-2 k, E_{8}, 5}^{w, W\left(E_{8}\right)}$ has no Fourier coefficient $\sum_{22^{\prime}}$ in its q^{0}-term. The function $\Delta^{2} \phi \in J_{24-2 k, E_{8}, 5}^{W\left(E_{8}\right)}$. Thus we have $24-2 k \geq 6$ i.e. $-2 k \geq-18$.
(III) Assume that $\phi \in J_{-2 k, E_{8}, 5}^{w, W\left(E_{8}\right)}$ has no Fourier coefficients $\sum_{22^{\prime}}$ and $\sum_{20^{\prime}}$ in its q^{0}-term. Then the function $\eta^{44} \phi$ is a $W\left(E_{8}\right)$-invariant Jacobi cusp form of weight $22-2 k$ and index 5 with a character. From the singular weight, it follows that $22-2 k>4$ i.e. $-2 k \geq-16$.
(IV) Assume that $\phi \in J_{-2 k, E_{8,5}}^{w, W\left(E_{8}\right)}$ has no Fourier coefficients $\sum_{22^{\prime}}, \sum_{20^{\prime}}$ and $\sum_{18^{\prime}}$ in its q^{0}-term. Then the function $\eta^{40} \phi$ is a $W\left(E_{8}\right)$-invariant Jacobi cusp form of weight $20-2 k$ and index 5 with a character. It follows that $20-2 k>4$ i.e. $-2 k \geq-14$.

Theorem

$$
\begin{aligned}
& \operatorname{dim} J_{-2 k, E_{8}, 5}^{w, W\left(E_{8}\right)}=0, \quad \text { if } \quad-2 k \leq-20, \\
& \operatorname{dim} J_{-18, E_{8}, 5}^{w, W\left(E_{8}\right)} \leq 1, \\
& \operatorname{dim} J_{-16, E_{8}, 5}^{w, W\left(E_{8}\right)} \leq 3 .
\end{aligned}
$$

Moreover, if the $W\left(E_{8}\right)$-invariant weak Jacobi form of weight -18 and index 5 exists, then its q^{0}-term has no Fourier coefficient $\sum_{22^{\prime}}$ and contains Fourier coefficient $\sum_{20^{\prime}}$.

Remark: We do not know if the $W\left(E_{8}\right)$-invariant weak Jacobi form of weight -18 and index 5 exists. But the $W\left(E_{8}\right)$-invariant weak Jacobi forms of weight -16 and index 5 do indeed exist.

Outlook

- Determine the generators of the space of $W\left(E_{8}\right)$-invariant weak Jacobi forms of index 5, 6,
- Want to know whether the bigraded ring $J_{*, E_{8}, *}^{w, W\left(E_{8}\right)}$ is finitely generated over M_{*} or not.

Thanks for your attention!

